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Abstract

We present a detailed overview of the construction of the A;,¢-cohomology theory from the preprint
“Integral p-adic Hodge theory”, joint with B. Bhatt and P. Scholze. We focus particularly on the
p-adic analogue of the Cartier isomorphism via relative de Rham—Witt complexes.
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Notes on Aj,s-cohomology

These are expanded notes of a mini-course, given at I'Institut des Mathématiques de Jussieu, 15 Jan. —
1 Feb., 2016, detailing some of the main results of the preprint

[BMS] B. Bhatt, M. Morrow, P. Scholze, Integral p-adic Hodge theory, arXiv:1602.03148 (2016).

More precisely, the goal of these notes is to give a detailed, and largely self-contained, presentation of the
construction of the Aj,s-cohomology theory from [BMS], focussing on the p-adic analogue of the Cartier
isomorphism via relative de Rham—Witt complexes. By restricting attention to this particular aspect of
[BMS], we hope to have made the construction more accessible. However, the reader should only read
these notes in conjunction with [BMS] itself and is strongly advised also to consult the surveys [3, 17]
by the other authors, which cover complementary aspects of the theory. In particular, in these notes we
do not discuss ¢-de Rham complexes, cotangent complex calculations, Breuil-Kisin(—Fargues) modules,
or the crystalline and de Rham comparison theorems of [BMS, §12-14], as these topics are not strictly
required for the construction of the Aj,¢-cohomology theory.!

We now offer a brief layout of the notes. Section 1 recalls some classical problems and results of p-adic
Hodge theory before stating the main theorem of the course, namely the existence of a new cohomology
theory for p-adic schemes which integrally interpolates étale, crystalline and de Rham cohomologies.

Section 2 introduces the décalage functor, which modifies a given complex by a small amount of
torsion. This functor is absolutely essential to our constructions, as it kills the “junk torsion” which so
often appears in p-adic Hodge theory and thus allows us to establish results integrally. An example of
this annihilation of torsion, in the context of Faltings’ almost purity theorem, is given in §2.2.

Section 3 develops the elementary theory of perfectoid rings, emphasising the importance of certain
maps 6,0, which generalise Fontaine’s usual map 6 of p-adic Hodge theory and are central to the later
constructions.

Section 4 is a minimal summary of Scholze’s theory of pro-étale cohomology for rigid analytic varieties.
In particular, in §4.3 we explain the usual technique by which the pro-étale manifestation of the almost
purity theorem allows the pro-étale cohomology of “small” rigid affinoids to be (almost) calculated in
terms of group cohomology related to perfectoid rings; this technique is fundamental to our constructions.

In Section 5 we revisit the main theorem and define the new cohomology theory as the hypercoho-
mology of a certain complex AQx,». In Theorem 5.5 we state the p-adic Cartier isomorphism, which

identifies the cohomology sheaves of the base change of A2y ,» along 0, with Langer—Zink’s relative de
Rham—Witt complex of the p-adic scheme X. We then deduce all main properties of the new cohomology
theory from this p-adic Cartier isomorphism.

Section 6 reviews Langer—Zink’s theory of the relative de Rham—Witt complex, which may be seen
as the initial object in the category of Witt complexes, i.e., families of differential graded algebras over
the Witt vectors which are equipped with compatible Restriction, Frobenius, and Verschiebung maps.
In §6.2 we present one of our main constructions, namely building Witt complexes from the data of a
commutative algebra (in a derived sense), equipped with a Frobenius, over the infinitesimal period ring
Ajns. In §6.3 we apply this construction to the group cohomology of a Laurent polynomial algebra and
prove that the result is precisely the relative de Rham—Witt complex itself; this is the local calculation
which underlies the p-adic Cartier isomorphism.

Finally, Section 7 sketches the proof of the p-adic Cartier isomorphism by reducing to the final calcu-
lation of the previous paragraph. This reduction is based on various technical lemmas that the décalage
functor behaves well under base change and taking cohomology, and that it transforms certain almost
quasi-isomorphisms into quasi-isomorphisms.

Acknowledgements. It is a pleasure to take this chance to thank my coauthors Bhargav Bhatt and
Peter Scholze for the discussions and collaboration underlying [BMS], from which all results in these
notes are taken. I am also grateful to the participants of the mini-course at I'IMJ on which these notes
are based, including J.-F. Dat, C. Cornut, L. Fargues, J.-M. Fontaine, M.-H. Nicole, and B. Klingler, for
their many helpful comments and insightful questions.

ITo be precise, there is one step in the construction, namely the equality (dimx) in the proof of Theorem 5.10, where
we will have to assume that the p-adic scheme X is defined over a discretely valued field; this assumption can be overcome
using the crystalline comparison theorems of [BMS].
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1 INTRODUCTION

1.1 Mysterious functor and Crystalline Comparison
Here in §1.1 we consider the following common situation:

- K a complete discrete valuation field of mixed characteristic; ring of integers Ok ; perfect residue
field k.

- X a proper, smooth scheme over Og.

For ¢ # p, proper base change in étale cohomology gives a canonical isomorphism
Hét(xp Zl) = Hét(va ZZ)

which is compatible with Galois actions.? Grothendieck’s question of the mysterious functor is often now
interpreted as asking what happens in the case ¢ = p. More precisely, how are H, (X%) := H., (X7, Zp)
and H, (Xi) = Hl (X3 /W (K)) related? In other words, how does p-adic cohomology of X degenerate
from the generic to the special fibre?

Grothendieck’s question is answered after inverting p by the Crystalline Comparison Theorem (Fontaine—

Messing, Bloch-Kato, Faltings, Tsuji, Niziol,...), stating that there are natural isomorphisms
Hérys(xk) ®W(k) IB<:rys = Hét (x?) ®Zp IB3crys

which are compatible with Galois and Frobenius actions (and filtrations after base changing to Bgg),
where Bc,ys and Bqg are Fontaine’s period rings (which we emphasise contain 1/p). Hence general theory
of period rings implies that ,

Cryb (‘%k)[ ] (Hét (xf) ®Zp BCTYS)GK

(i.e., the crystalline Dieudonné module of Hgt(%f)[%], by definition) with ¢ on the left induced by
1 ® ¢ on the right. In summary, (Hglt(%f)[%] Gk) determines ( Cryﬁ(%k)[ ], ). Similarly, in the other
direction, (Hg(%?)[%LGK) is determined by ( Crys(f{k)[ ], v, Hodge fil.).

But what if we do not invert p? There are many partlal results in the literature, under various
hypotheses, which we do not attempt to summarise here, except by offering the simplification that
“everything seems to work integrally if ie < p — 1”7, where e is the absolute ramification degree of K.
With no assumptions on ramification degree, dimension, value of p, etc., we prove in [BMS] results of
the following form:

(i) The torsion in Hf (X7) is “less than” that of H!  (Xy). To be precise,

crys

lengtth Hét (xﬁ) /pT < 1engthW( cryq (xk)/

for all r > 1, as one would expect for a degenerating family of cohomologies. In particular, if
(Xy,) is torsion-free then so is HE (X7).

crys

(i) If Hpyo(Xy) is torsion-free for « =i,i 4 1, then (H{ (X5), Gx) determines (HZ  (Xk), ).

It really is possible that additional torsion appears when degenerating the p-adic cohomology from
the generic fibre to the special fibre, as the following example indicates (which is labeled a theorem as
there seems to be no case of an X as above for which H} (X%) ®z, W (k) and H{, (X) were previously
known to have non-isomorphic torsion submodules):

Theorem 1.0. There exists a smooth projective relative surface X over Zs such that H}, (X%) is torsion-

free for all ¢ > 0 but such that Cryg(}fk) contains non-trivial 2-torsion.*

2To be precise, the isomorphism depends only on a choice of specialisation of geometric points of Spec O . A consequence
of the compatibility with Galois actions is that the action of Gx on H® t(%K, Zyg) is unramified.

30ur results can presumably make this more precise.

4In [BMS, Thm. 2.10] we also give an example for which He?t (X%)tors = Z/p*Z and ngys (Xk)tors = kD k.



Notes on Aj,s-cohomology

Sketch of proof. Step 1: Let Sy be any “singular” Enriques surface over Fy. Here “singular” means that
the torsion subgroup of the Picard scheme of Sy is isomorphic to the group scheme p, or equivalently
that the universal cover of Sy is provided by a Z/2Z-Galois cover Sy — Sy where Sy is a K3 surface. It is
in fact not clear that singular Enriques surfaces exist over Fy, but we construct an example. A theorem
of Lang—Ogus [13] states that Sy lifts to a smooth projective scheme S over Zs, and Sy then of course
lifts to a Z/27Z-Galois cover S — S.

The reason we start with an Enriques surface is that Illusie [10, Prop. 7.3.5] has calculated that
HZ.,.(So/W (F2)) = Z3° & Z/2Z, which will be the source of the torsion in crystalline cohomology.

Step 2: Let E be an ordinary elliptic curve over Zy. There is a canonical copy of ps inside the
2-torsion E[2] (Proof: ordinarity of E implies that E[2] is a twisted form of the group scheme po ®Z/2Z;
normally p, has p — 1 twisted forms, but here p = 2 and so E[2] D po). Let n : Z/2Z — ps be the
morphism of group schemes over Zs which is generically an isomorphism but is zero on the special fibre,
and consider the composition

Z)27 — po — E.

Now push out the Z/27Z-Galois cover S— S along this map to form an E-torsor
D =FK Xz/zzg — S,

where D is a smooth projective relative 3-fold over Zs.

Step 3: Calculate the p-adic cohomologies of D. On the special fibre the torsor becomes trivial
by construction, i.e., Dp, = Er, Xr, So, and so the Kiinneth formula implies that HZ, . (Dr,/W (F2))
contains a copy of HZ  (So/W(F3)) D Z/2Z. Conversely, on the generic fibre, it can be shown that
H (D@,Zg) is free for x = 0,1,2 (the cases * = 0,1 are automatic, but the case * = 2 is probably the
hardest part of the whole construction, for which we refer to [Prop. 2.2(i), BMS]).

Step 4: Let X C D be any sufficiently ample smooth hypersurface (this is possible over Fo by
Bertini theorems of Gabber and Poonen). The sufficiently ampleness condition ensures that the weak
Lefschetz theorem in crystalline cohomology holds integrally, so that Z/2Z C HZ..(Dg,/W (F3)) <
HZ, . (Xr,/W(F2)). To complete the proof it remains only to show that H}(Xg,,Z2) is free for x =
0,1,2,3,4; the cases * = 0,1 are standard, and we will check * = 2 in a moment, whence the cases
* = 3,4 follow from Poincaré duality. It remains only to check * = 2, for which we let U = D\ X, which
is affine, and consider the localisation sequence

H? 4 (Ug, Z2) = HE(Dg,, Zo) = H%(Xg,, Zo) — HY ¢ (Ug,, Zo) = ... .
Since U is affine, smooth and 3-dimensional, Artin’s cohomological bound (and Poincaré duality) implies
that H . (Ug,,Z2) and H_ . (Ug ,Z/2Z) vanish for « < 3. It follows that Hg’ét(U@27ZQ) is free over Zy,

c c,ét
whence the displayed localisation sequence and the proved freeness of Hé2t (D@27 Zs) imply the freeness
of Hgt(%@Q,Zg), as desired. O

1.2 Statement of main theorem, and outline

The following notation will be used repeatedly in these notes:

- C is a complete, non-archimedean, algebraically closed field of mixed characteristic;® ring of inte-
gers O; residue field k.

SO0 = l'&lw O/p0O is the tilt (using Scholze’s language [15] — or R in Fontaine’s original notation

[8]) of O; so O is a perfect ring of characteristic p which is the ring of integers of C° := Frac O,
which is a complete, non-archimedean, algebraically closed field with residue field k.

5More general, most of the theory which we will present works for any perfectoid field of mixed characteristic which
contains all p-power roots of unity.
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- Ajnr := W(OP) is the first period ring of Fontaine;® it is equipped with the usual Witt vector
Frobenius ¢. There are three key specialisation maps:

W(C)

étalej
de Rham crystalline

Ajng W (k)

Fontaine’s map 6
where Fontaine’s map 6 will be discussed in detail, and in greater generality, in Section 3.

The goal of this notes is to provide a detailed overview of the proof of the following theorem, proving the
existence of a cohomology theory, taking values in A;jyr-modules, which integrally interpolates the étale,
crystalline, and de Rham cohomologies of a p-adic scheme:

Theorem 1.1. For any proper, smooth (possibly formal) scheme X over O, there is a perfect complex
RTA(X) of Ajne-modules, functorial in X and equipped with a p-semi-linear endomorphism ¢, with the
following specialisations (which are compatible with Frobenius actions where they exist):

(i) Etale: RTy(X) ®H&inf W(C") ~ RI'(X,Z,) ®Hip W(C), where X := Xc is the generic fibre of X
(viewed as a rigid analytic variety over C in the case that X is a formal scheme)

(#i) Crystalline: RTy(X) ®kinf W (k) ~ R yys (X5 /W (E)).
(iii) de Rham: RT 4 (%) ®H&mf O ~ RT4r(%X/0).

The individual cohomology groups
Hj (%) := H'(RTA(X))

have the following properties:
(iv) Hi(X) is a finitely presented Aine-module;
(v) H&(I)[}%] is finite free over Ainf[%};
(vi) Hi(X) is equipped with a Frobenius semi-linear endomorphism ¢ which becomes an isomorphism
after inverting any generator £ € Ay of Ker 6, i.e., ¢ : H&(%)[%] = H&(%)[ﬁ],

(vii) Etale: Hi(X) ®a, , W(C®) = H} (X, Z,) ®z, W(C®), whence
(H}(X) ®ay W(C))P™! = H (X, Z,p).
(viti) Crystalline: there is a short exact sequence
0 — HL(X) @a, W(k) = Hiy(X3,/W (k) — Tor,™ (HIFL (%), W (k) — 0,
where the Tory term is killed by a power of p.

(iz) de Rham: there is a short exact sequence
0 — Hi(X) @4, O — Hig(X/0) — HFH(X)[E] — 0,
where the third term is again killed by a power of p.

(z) If Ho(Xn/W (k) or Hig(X/0O) is torsion-free, then H{(X) is a finite free Aing-module.

6A brief introduction to ©” and A, may be found at the beginning of Appendix A.
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Corollary 1.2. Let X be as in the previous theorem, fiz i >0, and assume Hl (X /W (K)) is torsion-
free. Then HY (X, Z,) is also torsion-free. If we assume further that HLLL(Xx/W (k)) is torsion-free,
then

H (%) @1, W(K) = Hiyyy(R/W (k) and  HL(X) ©3,,, O = Hin(%/0).

Proof. We first mention that the “whence” assertion of part (vii) of the previous theorem is the following
general, well-known assertion: if M is a finitely generated Z,-module and K is any field of characteristic
p, then (M ®z, W(K))?=' = M (where ¢ really means 1 ® ¢).

Now assume H/,  (X,/W(k)) is torsion-free. Then part (x) of the previous theorem implies that
H} (X) is finite free; so from part (vii) we see that H, (X,Z,) cannot have torsion. If we also assume
HIEL(Xk/W (k)) is torsion-free, then H™'(X) is again finite free by (x), and so no torsion terms appear
in the short exact sequences in parts (viii) and (ix) of the previous theorem. O

Having stated the main theorem, we now give a very brief outline of the ideas which will be used to
construct the Aj,s-cohomology theory.

(i) We will define RT'4 (%) to be the Zariski hypercohomology of the following complex of sheaves of
Ajpe-modules on the formal scheme X:

AQ:{/@ = LT]M(RV* (Ainf,x))
where:

- Ajpnf x is a certain period sheaf of Aj,e-modules on the pro-étale site X,;04¢ of the rigid analytic
variety X (note that even if X is an honest scheme over O, we must view its generic fibre as
a rigid analytic variety);

- v Xprost — Xzar is the projection map to the Zariski site of X;

- Ln is the décalage functor which modifies a given complex by a small amount of torsion (in
this case with respect to a prescribed element p € Ajye).

(ii) Parts (ii) and (iii) of Theorem 1.1 are proved simultaneously by relating AQx /o to Langer-Zink’s
relative de Rham-Witt complex W, Q% 103 indeed, this equals Q% e if r = 1 (which computes
de Rham cohomology of X) and satisfies W:Q%, , @w,(0) Wr(k) = WrQ5%, . (where W%, i i
the classical de Rham—Witt complex of Bloch—Deligne-Illusie computing crystalline cohomology of

(iii) If Spf R is an affine open of X (so R is a p-adically complete, formally smooth O-algebra”) which
is small, i.e., formally étale over O(Tlil, . ,Tjd) (:= the p-adic completion of (’)[Tlil7 . ,le]),
then we will use the almost purity theorem to explicitly calculate RI'z.,(Spf R, AQ%,0) in terms of
group cohomology and Koszul complexes. These calculations can be rephrased using “g-de Rham
complexes” over Aj,s (=deformations of the de Rham complex), but we do not do so in these notes.

(iv) Two notes on the history of the results:

- Early motivation for the existence of RT'4(X) (e.g., as discussed by Scholze at Harris’ 2014
MSRI birthday conference) came from topological cyclic homology. These notes say nothing
about that point of view.

- At the time of writing the announcement of our results [4], we only knew that the definition of
RT'A (%) in part (i) of the remark almost (in the precise sense of Faltings’ almost mathematics)
had the desired properties of Theorem 1.1, so it was necessary to modify the definition slightly;
this modification is no longer necessary.

"Throughout these notes we follow the convention that formally smooth/étale includes the condition of being topo-
logically finitely presented, i.e., a quotient of O(T1,...,Tn) by a finitely generated ideal. Under this convention formal
smoothness implies flatness. In fact, according to a result of Elkik [7, Thm 7] (see Rmq. 2 on p. 587 for elimination of the
Noetherian hypothesis), a p-adically complete O-algebra is formally smooth if and only if it is the p-adic completion of a
smooth O-algebra.
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2 THE DECALAGE FUNCTOR L7n: MODIFYING TORSION

For a ring A and non-zero divisor f € A, we define the décalage functor which was introduced first by
Berthelot—Ogus [2, Chap. 8] following a suggestion of Deligne. It will play a fundamental role in our
constructions.

Definition 2.1. Suppose that C' is a cochain complex of f-torsion-free A-modules. Then we denote by
7C the subcomplex of C[%] defined as

(nC)' = {x € fiC" : dzx € fHC"*}
i.e., nyC is the largest subcomplex of C[%] which in degree 7 is contained in f*C" for all i € Z.
It is easy to compute the cohomology of n;C'"

Lemma 2.2. The map C* — (n;C)" given by m — f'm induces a natural isomorphism
H'(C)/H'(C)[f] = H'(nsC).

Proof. 1t is easy to see that the map induces H(C) — H*(n;C), and the kernel corresponds to those

x € C" such that de =0 and fz € d(C"™1), ie., H(C)[f]. O

Corollary 2.3. If C = C' is a quasi-isomorphism of complezes of f-torsion-free A-modules, then the

induced map nyC — nyC" is also a quasi-isomorphism.

Proof. Immediate from the previous lemma. O
We may now derive ny. There is a well-defined endofunctor Lny of the derived category D(A) defined

as follows: if D € D(A) then pick a quasi-isomorphism C = D where C is a cochain complex of
f-torsion-free A-modules (e.g., pick a projective resolution, at least if D is bounded above) and set

L77fD = nfC.

This is well-defined by the previous corollary and standard formalism of derived categories.® The general
theory of the functor Ln; will be spread out through the notes (see especially Remarks 5.7 and 6.8); now
we proceed to two important examples.

2.1 Example 1: Crystalline cohomology
The following proposition is the origin of the décalage functor, in which A = W (k) and f = p; it is
closely related to the Cartier isomorphism for the de Rham-Witt complex.
Proposition 2.4. Let k be a perfect field of characteristic p and R a smooth k-algebra. Then
(i) (Illusie 1979) The absolute Frobenius o : WQg, , — W3, is injective and has image ny W3,
thus inducing a Frobenius semi-linear isomorphism

(i) (Berthelot-Ogus 1978) There exists a Frobenius semi-linear quasi-isomorphism
® : RUeyys(R/W (k) = Ly RT ey (R/W (K)).

Proof. Obviously (i)=-(ii), but (ii) was proved earlier and is the historical origin of Ln: see [2, Thm. 8.20]
(with the zero gauge). Berthelot—-Ogus applied it to study the relation between the Newton and Hodge
polygons associated to a proper, smooth variety over k.

(i) is a trivial consequence of the following standard de Rham-Witt identities:

- ¢ has image in anQ;%/k since ¢ = p'F on Wﬁg/k and dp = @d.
- @ is injective since F'V =V F = p.

- the image of ¢ is exactly 1, WQ%,  since ™' (pW Q1) = F(WQZ, 1) [10, Equ. 1.3.21.1.5]. O

8 Warning. Lny does not preserve distinguished triangles! For example, if A = Z then Ln,(Z/pZ) = 0 but
Lup(Z/p*Z) = Z/pL.
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2.2 “Example 2”7: An integral form of Faltings’ almost purity theorem

We now present an integral form of (the main consequence of) Faltings’ almost purity theorem; we do not
need this precise result, but we will make use of Lemma 2.7 and the “goodness” of the group cohomology
established in the course of the proof of Theorem 2.5. Moreover, readers familiar with Faltings’ approach
to p-adic Hodge theory may find this result quite motivating. To recall Faltings’ almost purity theorem
we consider the following situation:

- C is a complete, non-archimedean, algebraically closed field of mixed characteristic; ring of inte-
gers O.

- R is a p-adically complete, formally smooth O-algebra, which we further assume is connected
and small, i.e., formally étale over O(T*') := O(TF!, ... ,Tdﬂ}. As usual in Faltings’ theory, we
associate to this the following two rings:

- Ry = R®o<zi1>@<zi1/i’w> — this is acted on by I' := Z,(1)¢ via R-algebra automorphisms
in the usual way: given v € I' = Homg, ((Qp/Zp)?, pp) and ki, ..., kq € Z[%], the action is
v T Tyt = (k. k) T T

- R := the p-adic completion of the normalisation of R in the maximal (ind)étale extension of R[%}

— this is acted on by A := Gal(R[%]) via R-algebra automorphisms, and its restriction to Ry, gives
the I'-action there.

Faltings’ almost purity theorem states R is an “almost étale” R.-algebra, and the main consequence
of this is that the resulting map on continuous group cohomology

chont (F; Roo) — chont (A, E)

is an almost quasi-isomorphism (i.e., all cohomology groups of the cone are killed by the maximal ideal
m C O). This is his key to calculating étale cohomology in terms of de Rham cohomology; indeed,
RT cont (A, R) is a priori hard to calculate and encodes Galois/étale cohomology, while RT cont (I, Roo) is
easy to calculate using Koszul complexes (as we will see in the proof of Theorem 2.5) and differential
forms.

The following is our integral form of this result, in which we apply L7 with respect to any element
feEmcCO:

Theorem 2.5. Under the above set-up, the induced map
LnfRFcont (Pa Roo) — Lnle—‘cont (A; E)
is a quasi-isomorphism (not just an almost quasi-isomorphism!) for any non-zero f € m.

Remark 2.6. (i) The proof of Theorem 2.5 requires knowing nothing new about Rl ¢ont (A, R): a key
remarkable property of L7 is that it can transform almost quasi-isomorphisms into actual quasi-
isomorphisms, having only imposed hypotheses on the domain, not the codomain, of the morphism,;
this will be explained in the next lemma.

(ii) The theorem implies that the kernel and cokernel of H’ (T, Rs) — HE (A, R) are killed by f;
since f is any element of m, the kernel and cokernel are killed by m. Thus Theorem 2.5 is a family

of on-the-nose integral results which recovers Faltings’ almost quasi-isomorphism RIcont (T, Roo) —
chont (A, R)

Lemma 2.7. Let M C A be an ideal of a ring and f € M a non-zero-divisor. Say that an A-module
M is “good” if and only if both M and M/fM contain no non-zero elements killed by 9. Then the
following statements hold:

(i) If M — N is a homomorphism of A-modules with kernel and cokernel killed by M, and M is good,
then M/M|[f] — N/N|f] is an isomorphism.

(i) If C — D is a morphism of complexes of A-modules whose cone is killed by M, and all cohomology
groups of C' are good, then LnyC — LnyD is a quasi-isomorphism.
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Proof. Clearly (ii) is a consequence of (i) and Lemma 2.2. So we must prove (i).

Since the kernel of M is killed by 9%, but M contains no non-zero elements killed by 2, we see that
M — N is injective, and we will henceforth identify M with a submodule of N. Then M[f] = M N N|f]
and so M/M[f] — N/N|f] is also injective.

Since the quotient N/M is killed by 91, there is a chain of inclusions MfN C fM C fN C M. But
M/fM contains no non-zero elements killed by 9, so fM = fN, and this completes the proof: any
n € N satisfies fn = fm for some m € M, whence n = m mod N|f]. O

Proof of Theorem 2.5. To prove Theorem 2.5 we use Faltings’ almost purity theorem and Lemma 2.7 (in
the context A = O, f € 9 =m): so it is enough to show that H{_ (T, Rs) is “good” for all i > 0. This
is a standard type of explicit calculation of H! (T, Rs) in terms of Koszul complexes. For the sake of
the reader unfamiliar with this type of calculation, the special case that R = O(T*!) is presented in a
footnote;” here in the main text we will prove the general case. Both there and here we pick a compatible
sequence (p, (p2,--- € O of p-power roots of unity to get a generator v € Z,(1) and an identification
= Zg; as a convenient abuse of notation, we write (¥ := ng when k = a/p’ € Z[Z%].

First note that O(T*Y?™) admits a T-equivariant decomposition into O(T*1)-modules:

O<Iil/11°°> — O<Ii1> @ (/)<Ii1>non—int7

where —
O<I:t1>non-int — @ O<I:I:1>T1k1 . Tclifd
e ka €21 1)0(0,1)
not all zero
(where the hat denotes p-adic completion of the sum), with the generators 71,...,v4 € I' acting on the
rank-one free O-module Olel e de respectively as multiplication by ¢*1, ..., ¢k,

Base changing to R we obtain a similar I'-equivariant decomposition of R, into R-modules
Roo =R} Rggn—int, Rggn—int — @ Rlel . T§d7
kl,...,kdez[%]ﬂ[o,l)

not all zero

and s0 Rl cont (Z%, Roo) = RT cont(ZL, R) & R cont (Z2, RE™™), where

—

RFcont (ZZ, Rggn—int) ~ @ chont (Zz7 Rlel U Tdkd)

B, ka €2151000,1)

not all zero

9 In this footnote we carry out the calculation of the proof of Theorem 2.5 when R = O(Til)7 in which case Roo =
O(T*+1/P™) . To reiterate, we must show that H (T, Ro) is good for all 4 > 0.
First note that R admits a I'-equivariant decomposition into O-submodules

_ k
Reo = @kez[%]OT

(where the hat denotes p-adic completion of the sum), with the generator v € I" acting on the rank-one free O-module

k_
OTF as multiplication by ¢*. Thus RTcont(Zp, OTF) ~ [O oo O] (since the group cohomology of an infinite cyclic
group with generator ~ is computed by the invariants and coinvariants of v, and similarly in the case of continuous group
cohomology), and so

—

k_1
RTcont(Zyp, Roo) ~ @kez[l][o LSENYG)
p

(where the hat now denotes the derived p-adic completion of the sum of complexes), which has cohomology groups

H ot (Zp, Roo) & @kezo ®0,  Hini(Zp, Roo) = @kezo o @ o/¢k-no
1
kEZ[E]\Z
(once some care is taken regarding the p-adic completions: see footnote 10).

We claim that both cohomology groups are good. Since O has no non-zero elements killed by m, it remains only to prove
that the same is true of O/a®, where a = f or ¢¥ — 1 for some k € Z[1]\ Z. But this is an easy argument with valuations:

if x € O is almost a multiple of a, then v, (z) +¢ > vp(a) for all € > 0, whence vp(z) > vp(a) and so z is actually a multiple
of a.
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(where the hat now denotes the derived p-adic completion of the sum of complexes). Now we must
calculate HY,,(Zy,?) for 7 = R or RT}* - The,
In the first case, the action of Zg on R is trivial and so a standard group cohomology fact says

that HE . (Zg,R) = /\% R?. In the second case, another standard group cohomology fact says that

Rfcont(Zg, Rlel .. ~T£d) can be calculated by the Koszul complex K,.(¢¥* —1,...,¢* —1); then Lemma
B.1 reveals (crucially using that not all k; are zero) that
Hi

cont

(ZZ,RTfl "-Tf‘i) > R/(Cpr — 1)R(?:11)

where r ;= —minj<;<qv,(k;) > 1 is the smallest integer such that (,» — 1|¢F — 1 for alli =1,...,d.
Assembling!® these calculations yields isomorphisms

i i d—1
Héont(F7Roo) = /\Rd 8% @ R/(Cp_ ming <;<qvp(k;) = 1)R(i71)a
R kl,.“,kdez[%]m[o,n

not all zero

which we claim is good for each ¢ > 0. That is, we must show that R, R/fR, and R/({,» —1)R, for r > 1,
contain no non-zero elements killed by m. This is trivial for R itself since it is a torsion-free O-algebra,
so it remains to show, for each non-zero a € m, that R/aR contains no non-zero elements killed by m;
but R is a topologically free O-module [BMS, Lem. 8.10] and so R/aR is a free O/aO-module, thereby
reducing the problem to the analogous assertion for O/aQ, which was proved in the final paragraph of
footnote 9. O

3 ALGEBRAIC PRELIMINARIES ON PERFECTOID RINGS

Fix a prime number p, and let A be a commutative ring which is w-adically complete (and separated)
for some element m € A dividing p. Denoting by ¢ : A/pA — A/pA the absolute Frobenius, we have:

- the tilt A® := l'glcp A/pA of A, which is a perfect Fp-algebra, on which we also denote the absolute

Frobenius by . We sometimes write elements of A’ as = (z¢,z1,...), where 2; € A/pA and
x¥ = x;_; for all ¢ > 1, and unless indicated otherwise the “projection A® — A/pA” refers to the
map T — Ig.

- the associated “infinitesimal period ring” W (A”) of Fontaine, which is denoted by Aj,¢(A) in [BMS].
Note that, since A° is a perfect ring, W (A”) behaves just like the ring of Witt vectors of a perfect
field of characteristic p: in particular p is a non-zero divisor of W(A"), each element has a unique
expansion of the form [x] + p[y] + p?[z] + - - -, and W (A®)/p" = W,.(A%) for any 7 > 1.

10T his step requires some care about p-adic completions: the following straightforward result is sufficient. Suppose (Cy)x
is a family of complexes satisfying the following for all ¢ € Z: the group H*(C)) is p-adically complete and separated for

—

all A, with a bound on its p-power-torsion which is independent of A\. Then H*(,Ck) = @AHZI(C)\), where the left hat
is the derived p-adic completion of the sum of complexes, and the right hat is the usual p-adic completion of the sum of

cohomology groups. Proof. Set Cyjsc := @, Cx and C = C/'d; (derived p-adic completion); then the usual short exact
sequences associated to a derived p-adic completion are

0

%Ln,lﬁ Hi(odisc)[pr]
0 —— EXt%p (Qp/szHi(Cdisc)) Hl(C) HOI‘HZP (@p/vaHi+l(Cdisc)) —0
\

Hi(/C;sc) = @AHi(Ck)

|

0

Our assumption that €, H*(C}) has bounded p-power-torsion implies that the right and top terms vanish. O

10
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The goal of this section is to study these construction in more detail, in particular to introduce ring
homomorphisms

0,,0, : W(A°) — W,(A)

which play a fundamental role in the paper, and to define perfectoid rings.

3.1 The maps 6,, 0,

The following lemma is helpful in understanding A” and will be used several times; we omit the proof
since it is relatively well-known and based on standard p-adic or m-adic approximations:

Lemma 3.1. The canonical maps

lim A — A = lim A/pA — lim A/w A
2]

TP (]
are isomorphisms of monoids (resp. rings).

Before stating the main lemma which permits us to define the maps 6,., we recall that if B is any
ring, then the associated rings of Witt vectors W,.(B) are equipped with three operators:

R, F:W,1(B) = Wo(B)  V:Wn(B) = W1 (B),

where R, F' are ring homomorphisms, and V is merely additive. Therefore we can take the limit over r
in two ways (of which the second is probably more familiar):

lim W.(B) or  W(B)= lim W.(B)

r wrt F r wrt R

Lemma 3.2. Let A be as above, i.e., a ring which is w-adically complete with respect to some element
m € A dividing p. Then the following three ring homomorphisms are isomorphisms:

by — 13 b : b
W<A ) o &inr wrt R WT(A ) (i) Lﬂlr wrt F WT(A )
(ii)i
yﬂlr wrt F WT (A) (44%) yLn'r‘ wrt F WT(A/T‘-A)

where

(i) > is induced by the homomorphisms ©" : W,.(A") — W,(A®) forr >1;
(i3) the right vertical arrow is induced by the projection A> — A/pA — A/mA;

(iii) the bottom horizontal arrow is induced by the projection A — A/wA.

There is therefore an induced isomorphism

W) = lm W, (4)

r wrt F

making the diagram commute.

Proof. (i) is a formal consequence of A° being a perfect ring and commutativity of

o

W1 (A") ——= Wiy (A°)

T b

W, (A%)

11
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(ii) Since W, commutes with inverse limits of rings we have

lim Wo(A°) = lim lmW,(A/7A)=lim lim W,(A/rA) 5 lim W,(A/7A),
r wrt F rwrt F ¢ @ rwrt F r wrt F

where the first equality uses Lemma 3.1, and the final projection is an isomorphism since ¢ induces
an automorphism of the ring lim W,.(A/mA) (thanks again to the formulae Ry = ¢R = F in
characteristic p).

(iii) is the most subtle part. Firstly, for any fixed s > 1 we claim that the canonical morphism of
pro-rings

{WT (A/’]TSA)}T wrt F — {WT(A/T[—A)}’I” wrt F

is an isomorphism. As it is level-wise surjective, it is enough to show that the kernel {W,(rA/7*A)},
is pro-isomorphic to zero; fix r > 1. There exists ¢ > 1 such that p° is zero in W,.(4/7%A),!* and we
claim that F51¢ : W, i o(A/m5A) — W,.(A/m5A) kills the kernel W,y si.(mA/7°A). Each element in

the kernel can be written as /o7~ V?[ra;] for some a; € A/p°A, and indeed
r+s+c—1 . c—1 ) e r+s+c—1 )
pore ( Sy W) S a4 ( 3 vzcm1> _a.
i=0 i=0 i—c

This proves the desired pro-isomorphism, from which it follows that

lim W,(A/7°A) = lim W,(A/mA).

r wrt F r wrt F

Taking the limit over s > 1, exchanging the order of the limits, and using the isomorphism W,.(A) =
lim W (A/m°A) (again since W, commutes with inverse limits) completes the proof. O

Definition 3.3. Continue to let A be as in the previous lemma, and > 1. Define 6, : W (A") — W,.(A)
to be the composition

O, W(A) = lim W,(A) — W,(A),

r wrt F

where the first map is the isomorphism of the previous lemma, and the second map is the canonical
projection. Also define

0, := 0,00 : W(A") — W,(A).

We stress that the Frobenius maps F' : W,1(A) — W,.(A4) need not be surjective, and thus 6,, 5,,
need not be surjective; indeed, such surjectivity will be part of the definition of a perfectoid ring (see
Lemma 3.6).

To explicitly describe the maps 6,. and 5,«7 we follow the usual convention of exploiting the isomorphism

of monoids of Lemma 3.1 to denote an element z € A” either as x = (z,21,...) € yin@ A/pA or
— (40 (1 : .
= (@ M ) E@szpA.

Lemma 3.4. For any x € A’ we have 0,([z]) = [z(0] € W,.(4) and 0,([z]) = [)] for r > 1.

Proof. The formula for gr follows from a straightforward chase through the above isomorphisms, and the
corresponding formula for 6, is an immediate consequence. O

1 Proof. Since p" vanishes in the W, (F,)-algebra W, (A/pA), it also vanishes in W,(A/mA), and therefore its Witt
vector expansion has the form p” = (aom,...,ar_17) = Zj;ol V'[a;7] for some a; € A. Using the identity V*[a]V7[b] =

ptVi [abpjii] for a,b € A and j > i, it is now easy to see that if ¢ > 0 (depending on r and s) then p°¢ vanishes in
Wr(A/m5A). O

12



Matthew Morrow

In particular, Lemma 3.4 implies that 6 := 6, : W(A”) — A is the usual map of p-adic Hodge theory
as defined by Fontaine [8, §1.2], and also shows that the diagram

W(A) — W, (A)

L

W, (A7) ——= W,(A/pA)

commutes, where the left arrow is the canonical restriction map and the bottom arrow is induced by the
projection A° — A/pA.

The following records the compatibility of the maps 6, and 6, with the usual operators on the Witt
groups:

Lemma 3.5. Continue to let A be as in the previous two lemmas. Then the following diagrams commute:

W(A) LW (4) WA T W, (A) W(A?) 8 W, (A)
idi lR wl \LF /\THWIT Tv
W(A) —Zs Wi (4)  W(A) —2s W, (A) W(A?) —2 W, (A)

where the third diagram requires an element \,o1 € W(A®) satisfying 0,41(Ary1) = V(1) in Wyy1(A).
Equivalently, the following diagrams commute:

Ort1 Ort1

W(A) —>W,11(A)  W(A) —>W,1(A) W(A”) —= W,41(A)
wll \LR idl \LF xgo”‘“(/\Hl)T Tv
W) s Wo(4) WA T W(4) W(A) s W, (A)

Proof. We check the second set of diagrams, since it is these we will use when constructing Witt complexes

(even though it is the first set of diagrams which initially appear more natural). Under the chain of
isomorphisms of Lemma 3.2 defining W (4") = fm W,.(A) it is easy to check that the action of

¢~ on W(A”) corresponds to that of the restriction map R on hm e W,.(A). That is, the diagram

97‘+1

W(A") — e W, (A)

commutes. Commutativity of the second diagram follows from the definition of the maps §T. Finally,
using commutativity of the second diagram, the commutativity of the third diagram follows from the
fact that V F' is multiplication by V(1) on W,41(A). O

3.2 Perfectoid rings

The next goal is to define what it means for A to be perfectoid, which requires discussing surjectivity
and injectivity of the Frobenius on A/pA. We do this in greater generality than we require, but this
greater generality reveals the intimate relation to the map 6 and its generalisations 6., 6,..

Lemma 3.6. Let A be a ring which is m-adically complete with respect to some element m € A such that
P divides p. Then the following are equivalent:

(i) Every element of A/mpA is a p™-power.

13
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ii) Every element of A/pA is a p™-power.
(ii) Every P ph-p
iii) Every element of A/wPA is a p*®-power.
(i) Y p-p
(iv) The Witt vector Frobenius F : W, 1(A) — W,.(4) is surjective for all r > 1.
(v) 0, : W(A*) — W,.(A) is surjective for all v > 1.
(vi) 6 : W(A*) — A is surjective.

Moreover, if these equivalent conditions hold then there exist u,v € A* such that uw and vp admit
systems of p-power roots in A.

Proof. The implications (i)=-(ii)=-(iii) are trivial since mpA C pA C wPA. (v)=-(vi) is also trivial since
0=0.

(iii)=(i): a simple inductive argument allows us to write any given element = € A as an infinite sum
z =2 atnP" for some z; € A; but then z = (3", z;7")? mod prA.

(iv)=-(ii): Clear from the fact that the Frobenius F' : W3(A) — W1(A) = A is explicitly given by
(g, 1) = ab + pay.

(iv)=(v): The hypothesis states that ~the transition maps in the inverse system lim - W,.(A) are
surjective, which implies that each map 6, is surjective, and hence that each map 6, is surjective.

(vi)=(ii): Clear since any element of A in the image of @ is a p'"-power mod p.

It remains to show that (ii)=-(iv), but we will first prove the “moreover” assertion using only (i)
(which we have shown is equivalent to (ii)). Applying Lemma 3.1 to both A and A/mpA implies that the
canonical map @wHwP A— l'&nw_mp A/mpA is an isomorphism. Applying (i) repeatedly, there therefore
exists w € yan_mp A such that w(® = 7 mod 7pA (resp. = p mod mpA). Writing w® = 7 + 7px
(resp. w(®) = p+mpx) for some = € A, the proof of the “moreover” assertion is completed by noting that
1+ px e A (resp. 1 + max € AX).

(ii)=-(iv): By the “moreover” assertion, there exist 7’ € A and v € A* satisfying 7’7 = vp. Note that
A is n’-adically complete, and so we may apply the implication (ii)=-(i) for the element 7’ to deduce
that every element of A/7'pA is a p'f-power; it follows that every element of A/Ip is a p*"-power, where
I is the ideal {a € A : a” € pA}. Now apply implication “(xiv)’ =(ii)” of Davis-Kedlaya [6]. O

Lemma 3.7. Let A be a ring which is w-adically complete with respect to some element m € A such that
7P divides p, and assume that the equivalent conditions of the previous lemma are true.

(i) If Ker 6 is a principal ideal of W (A®), then

(a) ®:A/rA — A/7PA, a— aP, is an isomorphism;

(b) any generator of Ker 6 is a non-zero-divisor;'?

(c) an element & € Ker@ is a generator if and only if it is “distinguished”, i.e., its Witt vector
expansion € = (9,1, ...) has the property that & is a unit of A°.

(d) any element & € Ker @ satisfying 6,.(§) = V(1) € W,.(A) for some r > 1 is distinguished (and
such an element exists for any given r > 1).

(i) Conversely, if m is a non-zero-divisor and ® : A/mA — A/wPA is an isomorphism (which is
automatic if A is integrally closed in A[1]), then Ker 6 is a principal ideal.

Proof. Rather than copying the proof here, we refer the reader to Lem. 3.10 and Rmk. 3.11 of [BMS].
The only assertion which is not proved there is the paranthetical assertion in (ii), for which we just note
that if A is integrally closed in A[%], then @ is automatically injective: indeed, if a? divides 7P, then

(a/m)P € A and so a/m € A. O

121n all our cases of interest the ring A will be an integral domain, in which case it may be psychologically comforting to
note that A” and W (AP) are also integral domains. Proof. The ring W (AY) is p-adically separated, satisfies W (A®)/p = A®,
and p is a non-zero-divisor in it (these properties all follow simply from A’ being perfect). So, once we show that Al s
an integral domain, it will easily follow that W(A") is also an integral domain. But the fact that A’ is an integral domain
follows at once from the same property of A using the isomorphism of monids @wa? A S A’ which already appeared in
Lemma 3.2. O

14
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We can now define a perfectoid ring:
Definition 3.8. A ring A is perfectoid if and only if the following three conditions hold:

- A is m-adically complete for some element m € A such that #? divides p;
- the Frobenius map ¢ : A/pA — A/pA is surjective (equivalently, 6 : W (A”) — A is surjective);
- the kernel of § : W(A”) — A is principal.

Remark 3.9. The first condition of the definition could be replaced by the seemingly stronger, but
actually equivalent and perhaps more natural, condition that “A is p-adically complete and there exists
a unit w € AX such that pu is a ptP*-power.” Indeed, this follows from the final assertion of Lemma 3.6.

We return to the maps 6,., describing their kernels in the case of a perfectoid ring:

Lemma 3.10. Suppose that A is a perfectoid ring, and let £ € W(A) be any element generating Ker 0
(this exists by Lemma 3.6). Then Ker 0, is generated by the non-zero-divisor

& =& () 9™V
for any r > 1, and so Ker gr is generated by the non-zero-divisor
& =" (&) = () ¢"(9).

Proof. 1t is enough to prove the claim about &, since the claim about 52 then follows by applying ¢".
We prove the result by induction on r > 1, the case r = 1 being covered by the hypotheses; so fix r > 1
for which the result is true. By Lemma 3.7(i)(d) we may, after multiplying £ by a unit (depending on
the fixed r > 1), assume that 6,,1(¢) = V(1). Hence Lemma 3.5 implies that there is a commutative
diagram

0— =W)X W) a0

ler ler-'—l

Wit1(A) P A——0

\%4

in which both rows are exact. Since Ker 6, is generated by £p =1 (£) - - -~ ("=1(€), it follows that Ker 6,4
is generated by £p™1(€) - p7"(£), as desired. O

We finish this introduction to perfectoid rings with some examples:

Example 3.11 (Perfect rings of characteristic p). Suppose that A is a ring of characteristic p. Then A is
perfectoid if and only if it is perfect. Indeed, if A is perfect, then it is 0-adically complete, the Frobenius
is surjective, and the kernel of § : W(A) — A is generated by p. Conversely, if A is perfectoid, then
Lemma 3.7(i)(c) implies that the distinguished element p € Ker(# : W(A”) — A) must be a generator,
whence W (A®)/p = A; but W(A”)/p = A® is perfect.

In particular, in this case A” = A and the maps 6, : W(A”) — W,.(A) are the canonical Witt vector
restriction maps.

Example 3.12. If C is a complete, non-archimedean algebraic closed field of residue characteristic p > 0,
then its ring of integers O is a perfectoid ring. Indeed, if C has equal characteristic p then O is perfect
and we may appeal to the previous lemma. If C has mixed characteristic (our main case of interest), then
O is p*/P-adically complete, integrally closed in O[ﬁ] = C, and every element of O/pQ is a p't'-power

since C is algebraically closed, so we may appeal to Lemma 3.7(ii); in this situation the ring W (0O") will
always be denoted by Aj,¢.

Example 3.13. Let A be a perfectoid ring which is 7-adically complete with respect to some non-zero-

divisor m € A such that 7P divides p. Here we offer some constructions of new perfectoid rings from
A:

15
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(i) The rings A(T{/P" ..., T0/*") and A(TEYP™ . TFY/PTY| which are by definition the m-adic

completions of A[T}/?™ ..., Ts/" | and A[TEYP™ ... TFYP™] respectively, are also perfectoid.

P

(ii) Any m-adically complete, formally étale A-algebra is also perfectoid.

Proof. Since the m-adic completeness of the given ring is tautological in each case, we only need to check
that ® : B/7B — B/7?B, b~ b is an isomorphism in each case. This is clear for B = A(TTY?™) and
A(TYP™) | and it hold for and A-algebra B as in (i) since the square

B/m —2~ B/x

]

Alm — Al

is a pushout diagram (the base change of the Frobenius along an étale morphism in characteristic p is
again the Frobenius). O

3.3 Main example: perfectoid rings containing enough roots of unity

Here in §3.3 we fix a perfectoid ring A which has no p-torsion and which contains a compatible system
Cps Gp2, - - - of primitive p-power roots of unity (to be precise, since A is not necessarily an integral domain,
this means that (,- is a root of the p"th cyclotomic polynomial), which we fix. The simplest example is O
itself, but we also need the theory for perfectoid algebras containing O such as O(T: 1i /P Tj L/p m).
In particular we define particular elements ¢,&, y, ..., which will be used repeatedly in our main

constructions, and so we highlight (or rather box) the primary definitions and relations. Firstly, set

geeey

ei=(1,(p, G2, ) €A, pi=e] — 1€ W(A),

and

=1+ [P+ VP2 4. 4 [€V/PP L e W(A).

Lemma 3.14. ¢ is a generator of Ker 0 satisfying 0,.(§) = V(1) for all r > 1.

Proof. By Lemma 3.7(1)(d) it is sufficient to show that 6,(§) = V(1) for all » > 1. The ghost map
gh: W,.(A) — A" is injective since A is p-torsion-free, and so it is sufficient to prove that gh(6,.(£)) =
gh(V(1)). But it follows easily from Lemma 3.4 that the composition ghof, : W(A?) — A" is given by
(0,0p,...,00""1), and so in particular that

gh(8,(€)) = (6(€),00(6), ... 0¢"1(€).
Since 0(¢) = 0 and gh(V (1)) = (0,p,p,p,...), it remains only to check that 6p*(¢) = p for all i > 1,
which is straightforward:

i—1

051 () =001+ [ |+ [ P+ [P TP ) = 1414+ 1= -

It now follows from Lemma 3.10 that Ker 0, is generated by

&= (&) () = _Z [P,

and that Ker 57, is generated by

16
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Proposition 3.15. p is a non-zero divisor of W(A®) which satisfies

p=E&p (1), O (1) = &, 0,(1) = [Gr] — 1 € Wi (A)

for allr > 1.

Proof. The final identity is immediate from Lemma 3.4. It is clear that u = £ ~! (1), whence the identity
w=E&.0""(u) follows by a trivial induction on 7, and the central identity then follows by applying ©". To
prove that p is a non-zero-divisor, it suffices to show that 6, (x) = [(,] — 1 is a non-zero-divisor of W;.(A)
for all » > 1 (since W(Ab) = %iLnT wit p Wr(A4)). Since A is p-torsion-free the ghost map is injective and
so we may check this by proving that

gh([Gpr] = 1) = (Gr =1, = 1,0, G — 1)

is a non-zero-divisor of A"; i.e., we must show that (,» — 1 is a non-zero-divisor in A for all » > 1. But
Cpr — 1 divides p, and A is assumed to be p-torsion-free. O

Remark 3.16. The reader may wish to note that the Teichmiiller lifts [(}], [(;2],... are not primitive
p-power roots unity in W,.(A) in any reasonable sense. Indeed, it follows from its ghost components
gh([¢p)) = (¢py 1,1,...,1) that [¢,] is not a root of XP~1 + ... 4+ X + 1 when r > 1.

However, the element [(,r] — 1 € W,.(A) will play a distinguished role in our constructions and so we
point out that it is a non-zero-divisor whose powers define the p-adic topology. Indeed, it follows from
the ghost component calculation of the previous proposition that [{,r] — 1 is a root of the polynomial

(X+1)P —1)/X =XP 14 pX ()47,

whence p divides ([pr] — 1)P"~1, and [Cpr] — 1 divides p". A particularly important consequence of this
is that Lnj,,)—1 commutes with derived p-adic completion, by [BMS, Lem. 6.20].

4 THE PRO-ETALE SITE AND ITS SHEAVES

In this section we review aspects of pro-étale cohomology following [16, §3—4], working under the following
set-up:

- C is a complete, non-archimedean, algebraically closed field of mixed characteristic; ring of inte-
gers O with maximal ideal m; residue field k.

- X is a quasi-separated rigid analytic variety over C.

In particular, we will introduce various pro-étale sheaves on X which will play an essential role in our
constructions, and explain how to calculate their cohomology via affinoid perfectoids and almost purity
theorems.

4.1 The pro-étale site X,

We will take for granted that the reader is either familiar with, or can reasonably imagine, étale mor-
phisms and coverings of rigid analytic varieties, and we let X¢; denote the associated étale site of X. To
define coverings in X (and soon in Xpree) it is useful to view X as an adic space,'® and we therefore
denote by |X| the underlying topological space of its associated adic space X®d: for example, if T is an
affinoid C-algebra, then |Sp T'| denotes the topological space of (equivalences classes of) all continuous
valuations on T, not merely those factoring through a maximal ideal (which correspond to the closed
points of the adic space).
We now define (a countable version of) Scholze’s pro-étale site Xpo¢ in several steps:

13 There is an equivalence of categories between quasi-separated rigid analytic varieties over C and those adic spaces over
Spa(C, O) whose structure map is quasi-separated and locally of finite-type. A collection of étale maps {fy : Uy — U} in
X¢t is a cover if and only if it is jointly “strongly surjective”, which is equivalent to being jointly surjective at the level of
adic points. See [9, §2.1].

17



Notes on Aj,s-cohomology

- An object of Xpo¢ is simply a formal inverse system U = “@”i U; in Xg of the form

:
\Lﬁn. ét. surj.
Us
¢ﬁn. ét. surj.
Uy
Jat

X

In other words, U is the data of a tower of finite étale covers of Uy, which is étale over X. The
underlying topological space of U is by definition [If| := lim, [U;|.
- Up to isomorphism,'4
between the towers

a morphism f : U — V in X4t is simply a compatible family of morphisms

|, ]

U3 ————V;

/ '

Us Va

Lo

U1 4>V1

N

- A morphism f as immediately above is called pro-étale if and only if it satisfies the following
additional condition: the induced finite étale map

f2

Uip1 — Ui xv, Vi

is surjective for each ¢ > 1. It can be shown that this implies that the induced continuous map of
topological spaces |f]| : [U| — |V| is an open mapping [16, Lem. 3.10(iv)].

Then a collection of morphisms {fy : Un — U} in X6 is defined to be a cover if and only if
each morphism f) is pro-étale and the collection {|fx] : [Ux| — ||} is a pointwise covering of the
topological space |U|. For the proof that this indeed defines a Grothendieck topology we refer the
reader to [16, Lem. 3.10].

This completes the definition of the pro-étale site Xproct.”

14This means that we are permitted to replace the towers “lim ”Z_ U; and “lim ”i Vi by “obviously isomorphic” towers,
e.g., by inserting or removing some stages of the tower. To be precise, first let pro- X¢; denote the usual category of
countable inverse systems in Xg;: its objects are inverse systems “1(i£1”i U; in X4, and its morphisms are defined by
HOm(“%iLn”i Ui, “@”j Vj) = @j h_nf>1Z Homxét (Ui, V5). Then call an object U of pro- Xg; pro-étale if and only if it
is isomorphic in pro- X4 to an inverse system “lim” U; whose transition maps are finite étale surjective; and call a
morphism f : U — V pro-étale if and only if there exist isomorphisms U = “1(i£1” U; and V & “%iil”l Vi in pro- Xg
such that “lim” U; and “lim” V; have finite étale surjective transition maps and such that the resulting morphism
“lim” U; — ¢ llm ” 'V; has the shape described in the main text. Then the category X ¢ is more correctly defined as

o= proe
the full subcategory of pro- Xg; consisting of pro-étale objects, and covers are defined as in the main text using the more
correct definition of a pro-étale morphism.

15The topos of abelian sheaves on Xproét is “algebraic” in the sense of [1, Def. VI.2.3]; see [16, Prop. 3.12] for this and
further properties of the site. In particular, it then follows from [1, Corol. VI.5.3] that if U € Xproét is such that U] is

quasi-compact and quasi-separated, then H;roét (U, —) commutes with filtered inductive limits of sheaves.
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There is an obvious projection functor of sites
v Xproét — Xét
obtained by pulling back any U € Xg; to the constant tower --- — U = U — U — X in Xj04; this
satisfies the unsurprising'® property that if F is a sheaf on X¢;, and U = gl”i U; € Xprost, then
v F(U) = ling F(U;)
K3

and more generally . ‘
Hyvoes U, v* F) = lim H (Us, F)
for all 4 > 0 [16, Lem. 3.16]. For this reason the most interesting sheaves on X0¢ are not obtained via
pullback from Xy, although our first examples of sheaves on Xy,q¢ are of this form.
The integral and rational structure sheaves O}ét and O Xg O X are defined by

O;ét(SpT) =T°CT=:0x,(SpT)

where SpT € Xyg; is any rigid affinoid, and T° denotes the subring of power bounded elements inside T'.
The integral structure sheaf was not substantially studied in the classical theory.!” Pulling back then
defines the integral and rational structure sheaves O} and Ox on Xprost

+ . + o
0f =v"0%, C Ox :=1"0x,,

which are our first examples of sheaves on Xproét.
We now describe the finer, local nature of the pro-étale site by introducing affinoid perfectoids and
stating the fundamental role which they play in the theory.

Definition 4.1. An object U = “@”i U; in Xprost is called affinoid perfectoid if and only if it satisfies
the following two conditions:

- U; is a rigid affinoid, i.e., U; = SpT; for some affinoid C-algebra T;, for each ¢ > 1;
- and the p-adic completion of the ring (9} Uu) = hgl T? is a perfectoid ring.'®

The following key result makes precise the idea that X looks locally perfectoid in the pro-étale
topology, and that affinoid perfectoids are small enough for their cohomology to almost vanish, thereby
allowing them to be used for almost calculations a la Cech, as we will see further in §4.3.

Proposition 4.2 (Scholze). (i) The affinoid perfectoid objects of Xprost form a basis for the site.
(ii) IfU € Xprost is affinoid perfectoid, then Hpj, o (U, O% /p) is almost zero (i.e., killed by m) for > 0.

Proof. These are consequences of the tilting formalism and almost purity theorems developed in [15].
See Corol. 4.7 and Lem. 4.10 of [16]. O

To complement the previous local result we recall also the key global result about pro-étale cohomol-
ogy, which we will need:

Theorem 4.3 (Scholze). If the rigid analytic variety X is moreover proper and smooth over C, then the
canonical map of O/pO-modules

Hét(Xv Z/pZ) ®Z/pZ O/po — H[i)roét(X7 O;r(/p)
is an almost isomorphism (i.e., the kernel and cokernel are killed by m) for all i > 0.

Proof. See [16, §5]. O

16Nonetheless, a condition is required: we must assume that the topological space |U| is quasi-compact and quasi-
separated; this is satisfied in particular when U is a tower of rigid affinoids.
I7Unlike the rational structure sheaf, the integral structure sheaf can have non-zero higher cohomology on rigid affinoids.
18We emphasise that, in our current set-up, this perfectoid ring will always be the type considered in §3.3: indeed, it is
-torsion-free since each T; is p-torsion-free, and it contains a compatible sequence of primitive p-power roots of unity since
p-torsion-fi i h T; is p-torsion-free, and it tai patible seq f primitive p-p ts of unity si
it contains O.
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4.2 More sheaves on X,

As indicated by Proposition 4.2(ii) and Theorem 4.3, the pro-étale sheaf O% /p on X enjoys some special
properties, and this richness passes to the completed integral structure sheaf

Of = T&n(’)}/pﬂ

which is probably the most important sheaf on X064, We stress that it is not known whether (9;2 U
coincides with the p-adic completion of O} (U) for arbitrary objects U € Xproet-
Further sheaves of interest on X4t are collected in the following definition:

Definition 4.4. The tilted integral structure sheaf '° is

O;r(b = @O}/p7
%)

where the limit is taken over iterations of the Frobenius map ¢ on the sheaf of F,-algebras (9} /p. We
will also need Witt vector forms2° of the completed and tilted integral structure sheaves

W,.(0F) and  W,.(OP),
and the infinitesimal period sheaf
Ainf,X = W(O;b)

By repeating Lemma 3.2 in terms of presheaves on X4t and then sheafifying, we obtain a canonical
isomorphism of pro-étale sheaves
~ . A+
Ainf’X — m WT(OX).
r wrt F

As in the affine case in §3.1 we then denote the resulting projection maps and their Frobenius twists by
O : Ainr,x — WT((’)}) and 0, =0,0¢" : Ajprx — WT(O}).

To reduce further analysis of all these sheaves to the affine case of Section 3, we combine the fact that
X is locally perfectoid in the pro-étale topology (Proposition 4.2(i)) with the fact that the sections of
these sheaves on affinoid perfectoids are “as expected”:

Lemma 4.5 (Scholze). LetU = “@”i U; be an affinoid perfectoid in Xprosr, with associated perfectoid
ring A== O%U),. Then

P
OkU) =4, W (OR)U) =W, (4), OFU) =4, W(OL)U) =W (&), AuxU)=W(A).
On the other hand, for * > 0 the pro-étale cohomology groups

He oo, 0%),  HE oUW (OF),  Hiood,0%),  Hioud U, Wi(OF), Hivoe U, Aing x)

proét proét proét proét

are almost zero, i.c., killed respectively by m, W,.(m), m®, W,.(m®), W (m®).2!

9Usually denoted by 6;'@ to evoke the idea of it being the completed integral structure sheaf on the tilt X° of X.

20If R is a sheaf of rings on a site 7, then W, (R) and W(R) are the sheaves of rings obtained by applying the Witt
vector construction section-wise, i.e., W.(R)(U) := Wy (R(U)) and W(R)(U) := W(R(U)) for all U € T.

21 Now seems to be an appropriate moment for mentioning some formalism of almost mathematics over Witt rings.
By a “setting for almost mathematics” we mean a pair (V,I), where V is a ring and I = I? C V is an ideal which
is an increasing union of principal ideals |y tAV generated by non-zero-divisors t. Elementary manipulations of Witt
vectors [Lem. 10.1 & Corol. 10.2, BMS] then show that each Teichmiiller lift [¢5] € W;-(V) is a non-zero-divisor and that
Wi (I) := Ker(W; (V') = W;(V/I)) equals the increasing union | J, [tx]W:(V'), which moreover coincides with its square; in
conclusion, the pair (W, (V), W,.(I)) is also a setting for almost mathematics. We apply this above, and elsewhere, in the
cases (V,I) = (O, m) and (O°, m®).

Upon taking the limit as r — oo, the inclusion W(I) := Ker(W(V) — W(V/I)) D [I] := U, [tA]W (V) is strict; the
pair (W(V), [I]) is a setting for almost mathematics, but (W (V), W(I)) typically is not. So, strictly, speaking, the almost
language should be avoided for the ideal W (m”) above. However, if V is a perfect ring of characteristic p (e.g., V = O),
then [I] and W (I) coincide after p-adic completion (and derived p-adic completion) by the argument of the proof of Lemma
A.5; so a map between p-adically complete W (V')-modules (resp. derived p-adically complete complexes of W (V)-modules)
has kernel and cokernel (resp. all cohomology groups of the cone) killed by W (I) if and only if they are killed by [I].
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Proof. See Lems. 4.10, 5.11 and Thm. 6.5 of [16] for the description of the sections. The almost vanishings
follow by taking suitable limits in Proposition 4.2(ii). O

Corollary 4.6. The maps of pro-étale sheaves Hr,ér s Aingx — Wr(@j}) are surjective, with kernels

generated respectively by the elements 67.,57. € Ajns = W(O") defined in §3.3; moreover, these elements
(as well as p € Aint, also defined in §3.3) are non-zero-divisors of the sheaf of rings Aing x -

Proof. All assertions are local, so by Proposition 4.2(i) it is sufficient to prove the analogous affine
assertions after taking sections in any affinoid perfectoid U € Xi,;04¢; but using the descriptions of the
sections given by the previous lemma, these affine assertions were covered in §3.2-3.3. O

4.3 Calculating pro-étale cohomology

This section is devoted to an explanation of how Proposition 4.2(ii) is used in practice to (almost)
calculate the pro-étale cohomology of our sheaves of interest; this is of course the pro-étale analogue of
Faltings’ purity theorem and techniques which we saw in §2.2. We assume in this section that our rigid
analytic variety X is the generic fibre X¢ of a smooth formal scheme X over O; this will be the set-up of
our main results later.

Relatively elementary arguments show that X admits a basis of affine opens {Spf R} where each R
is a p-adically complete, formally smooth O-algebra which is moreover small, i.e., formally étale over
(’)(Tlil, ... ,Tjd). Fix such an open Spf R C X (as well as a formally étale map (’)(Zﬂ> — R, sometimes
called a “framing”); the associated generic fibre is the rigid affinoid space U := Sp R[%] C X, which is
equipped with an étale morphism to Sp C(Iﬂ). We will explain how to almost calculate the pro-étale
cohomology groups H, ¢ (Sp R[%], ?) where 7 is any of the sheaves from Lemma 4.5.

For each ¢ > 1, let

Ri =R ®(9<Ii1) O<Ii1/pi>

be the finite étale R-algebra obtained by adjoining pi-roots of T1,...,Ty. Then Sp Ri+1[%] — Sp Ri[%}
is a finite étale cover of rigid affinoids for each ¢ > 0, whence it easily follows that

U= “@” SpRi[%] — U
K3
is a cover in Xprost-
In fact, Sp Ri[%] — U is a finite Galois cover with Galois group Mﬁu where ¢ = (¢1,...,Ca) € pgi acts
on R; in the usual way via Q-lel/pl . .ng/pz = (I ---ngTfl/pl ---Tjd/pl, and so for each s > 1 there

is an associated Cartan-Leray?? spectral sequence

He (e, HY oo (Us, O% /p°)) = HSEL (U, 0% /p°),

grp proét

or writing in a more derived fashion
Rrgrp (ﬂgz 5 RFproét(Ui7 O;r( /ps)) :> RFproét(U7 Oj_( /ps)-

Taking the colimit over 7 yields an analogous quasi-isomorphism (and spectral sequence) for the “Zp(l)d—
Galois cover” U — U:

RFgrp (Zp(l)da RFprOét (U, O;_( /ps)) :> RFproét(U7 O}_( /ps)~

However, U is affinoid perfectoid: indeed, since thg power bounded elements in the affinoid C-algebra
Ri[%] are exactly R;, we must show that (hng Ri), = R®O<Ii1>0<zil/l7 ) =: Ry is a perfectoid

ring; but R, is a p-adically complete, formally étale O(Zil/ P m)—algebra, whence it is perfectoid by
Example 3.13. Therefore the pro-étale cohomology H (U, O% /p*) almost vanishes for * > 0 (by

220ften called Hochschild—Serre in this setting. Here Hg,p and Rl'grp refer to group cohomology for a topological group
acting on discrete modules.
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Proposition 4.2(ii)) and almost equals Ru./p® R for * = 0 (by Lemma 4.5, using that O% /p* = (/9\} /D%);
so the edge map associated to the previous line is an almost quasi-isomorphism

1. qu.-iso.
) a

Rrgrp(zp(l)da Roo/psRoo Rrproét(Uv O}/ps)

(i.e., all cohomology groups of the cone are killed by m), where we mention explicitly that Z,(1)¢ is acting
on R, as in §2.2. Finally, taking the derived inverse limit?? over s yields an almost quasi-isomorphism

al. qu.-iso.

RFcont (Zp(l)d7 Roo) Rrproét<U7 @;)

Arguing by induction and taking inverse limits, these almost descriptions may be extended to the
other sheaves in Lemma 4.5, giving in particular almost (wrt. W,.(m) and W (m®) respectively) quasi-
isomorphisms

al. qu.-iso.

BT cont (Z(1)%, Wy (Roo)) RT ot (U, W (OF))

and

al. qu.-iso.
RT cont(Zp (1), W(R2)) " 255 R proet (U, Ajnt x).-

These “Cartan—Leray almost quasi-isomorphisms” are crucial to all our calculations of pro-étale coho-
mology.

5 THE MAIN CONSTRUCTION AND THEOREMS

In this section we present the main construction and define the new cohomology theory introduced in
[BMS], before proving that its main properties, as stated in Theorem 1.1, can be reduced to a certain
p-adic Cartier isomorphism. We work in the set-up of §1.2 throughout:

- C is a complete, non-archimedean, algebraically closed field of mixed characteristic; ring of inte-
gers O with maximal ideal m; residue field k.

- We pick a compatible sequence (p, (y2,--- € O of p-power roots of unity, and define u, &, &, E,ET €
Aing = W((’)b) as in §3.3.

- X is a smooth formal scheme over O, which we do not yet assume is proper; its generic fibre, as a
rigid analytic variety over C, is denoted by X = X¢.

- U Xprost —+ Xzar is the projection map of sites obtained by pulling back any Zariski open in Xza,
to the constant tower in Xp,.¢ consisting of its generic fibre. That is, v is the composition of
maps of sites Xprost —+ Xe¢t — X¢¢ — Xzar, where the first projection map is what was previously
denoted by v in §4.1.24

The following is the fundamental new object at the heart of our cohomology theory:

23This process of taking the inverse limit deserves further explanation. By definition, when G is a topological group and
M is a complete topological G-module whose topology is defined by a system {N} of open sub-G-submodules, we define
its continuous group cohomology as RTcont(G, M) := Rlimy Rlgrp(G, M/N) and H}_ (G, M) := H*(RTcont (G, M));
of course, we may always restrict the limit to any preferred system of open neighbourhoods of 0 by sub-G-modules. In
particular, R cont(Zp(1)?, Roo) = Rlims RTgrp (Zp(1)?%, Roo/P® Roo).

To take the inverse limit of the right, we show that the canonical map RI',.o¢¢(U, @j’() — Rlimgs RT'p04¢ (U, O;/ps)
is a quasi-isomorphism. Since the codomain may be rewritten as RI'[.q4t (U, Rlims (’)j(/ps) by general formalism of

derived functors, it is enough to show that the canonical map 63’; —  Rlimg O; /p° is a quasi-isomorphism (note
that the topos of pro-étale sheaves does not satisfy the necessary Grothendieck axioms to automatically imply that
higher derived inverse limits vanish in the case of surjective transition maps!), for which it is enough to show that
RThroet (V, (5;"() — Rlims RT'061 (V, Oj}/ps) is a quasi-isomorphism for every affinoid perfectoid V € X[ 4¢; this is
what we shall now do. Firstly, it is easily seen to be an almost quasi-isomorphism by Lemma 4.5, and so in particular the
cone is derived p-adically complete; since the codomain is derived p-adically complete, therefore the domain is also; but
the codomain is precisely the derived p-adic completion of the domain, and hence the map is a quasi-isomorphism.

24We hope that this rechristening of v does not lead to confusion, but we are following the (incompatible) notations of
[16] and [BMS].
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Definition 5.1. Applying v : X;0¢t — Xzar to the period sheaf Ajn¢ x gives a “nearby cycles period
sheaf” Rv,Aius x, which is a complex of sheaves of Aj,-modules on Xza,; to this we now apply L7, to
obtain a complex of sheaves of A;j,;-modules on Xyz,,:

AQx /0 = Ly (RvsAing x ).
We will soon equip Afx,o with a Frobenius-semi-linear endomorphism ¢.

Remark 5.2. The previous definition used the décalage functor for a complex of sheaves, whereas we only
defined it in Definition 2.1 for complexes of modules; here we explain the necessary minor modifications.

Let 7 be a topos, A a ring, and f € A a non-zero-divisor. Call a complex C of sheaves of A-modules
strongly K-flat if and only if

- C'is a sheaf of flat A-modules for all i € Z,

- and the direct sum totalisation of the bicomplex C'® 4 D is acyclic for every acyclic complex D of
sheaves of A-modules.?®

For any such C' we define a new complex of sheaves n;C by
T2Uw (nC)(U) :={z € fiC(U) : dx € fTCH(U)}.

Any complex D of sheaves of A-modules may be resolved by a strongly K-flat complex C = D (e.g.,
see the proof of The Stacks Project, Tag 077J), and we define Ln;D := nyC. This is a well-defined
endofunctor of the derived category of sheaves of A-modules on T .
Warning: The décalage functor does not commute with global sections: there is a natural “global-
to-local” morphism
LnfRF(T, C) - RF(T, LT]fC),

but this is not in general a quasi-isomorphism.

Remark 5.3. Before saying anything precise, we offer some vague descriptions of how AQy ¢ looks and
how it can be studied. Ignoring the décalage functor for the moment, Rv, Aj,¢ x is obtained by sheafifying
X DO Spf R — RI'proet (SP R[%], Aing x ), as Spf R runs over affine opens of X. We may suppose here that
R is small and so put ourselves in the situation of §4.3: R is a small, formally smooth O-algebra
corresponding to an affine open Spf R C X, with associated pro-étale cover U = “'&1”1, Sp Ri[%] —
Sp R[%], where U is affinoid perfectoid with associated perfectoid ring R,,. As we saw in §4.3 there is an
associated Cartan-Leray almost (wrt. W (m”)) quasi-isomorphism

chont (Zp(l)d7 W(Rgo)) — RFproét(Sp R[%], Ainf,X)-

Recalling from §2.2 that the décalage functor sometimes transforms almost quasi-isomorphisms into
actual quasi-isomorphisms, A2y ,o can therefore be analysed locally through the complexes

LnuRFcont (Zp(l)dv W(RZO))7

as Spf R various over small affine opens of X.26 These complexes will turn out to be relatively explicit
and related to de Rham—-Witt complexes, Koszul complexes, and ¢g-de Rham complexes.

Remark 5.4 (de Rham—Witt complexes). Before continuing any further with Section 5 the reader should
probably first read §6.1, where the relative de Rham-Witt complex W25 /o On X is defined; it provides
an explicit complex computing both de Rham and crystalline cohomology.

In the subsequent §6.2, which the reader can ignore for the moment, we will explain methods of
constructing “Witt complexes” over perfectoid rings. In particular, given a commutative algebra object

25This is not automatic from the first condition since C' may be unbounded, and is a standard condition to impose when
requiring flatness conditions on unbounded complexes of sheaves.

26The astute reader may notice that in this argument we have just implicitly identified Ln, RTLy06t(SP R[%], Ajnf x) and
RU'z,,(Spf R, AQy% /), contrary to the warning of Remark 5.2; this is precisely the type of technical obstacle which will
need to be overcome in §7.1.

23



Notes on Aj,s-cohomology

D € D(Anr) equipped with a Frobenius-semi-linear automorphism ¢ p and satisfying certain hypotheses,
we will equip the cohomology groups

Wi(D) = H*((LnD)/§),  where (Ln,D)/& = (Ln,D) &} 5 W (0),

with the structure of a Witt complex for @ — R (where R is an O-algebra depending on D); the
differential d : W (D) — Wp*!(D) will be given by the Bockstein Bockg .

To explain the main theorems we recall from §3.1 that there are two ways of specialising from Aj,¢

to W,.(0)
1nf
/ \Qﬁ

Wr( ): mf/fr inf r = mf/fr inf

so we use these to form corresponding specialisations of the complex of sheaves of Ajpe-modules AQy,0:

AQx /0
/ N\
AQxj0/& = AQxj0 ®F_ 4. AQx 0 @ " W, (0) = AQx 0 /& = W,Qx /0

The next theorem is the main new calculation at the heart of our results (and is the reason for the chosen

notation WX)X /o on the right of the previous line), from which we will deduce all further results, in
which W,.Q5% e is the relative de Rham—Witt complex of X over O:

Theorem 5.5 (p-adic Cartier isomorphism). There are natural?” isomorphisms of Zariski sheaves of
W,.(0) = Ainf/g,Ainf—modules

OF" Wil jo —+ HH (W, Qx0)
for alli >0, r > 1, which satisfy the following compatibilities:

(i) the restriction map R : WH_lQéE/O — W,«Qge/o is compatible with the map Wy41Qy 0 — 17[/:?)35/@
induced by the inverse Frobenius on Ainf x .

(i) the de Rham-Witt differential d : W, Q /0 - W, QZ 7 s compatible with the Bockstein homomor-
phism Bocks : H' (Wrﬂx/@) — 7—[1+1(W,«Qx/@).

Idea of forthcoming proof. Using the construction of §6.2 (summarised in the previous remark), we will

equip the sections ’H'(V/V:?lx /0)(Spf R) with the structure of a Witt complex for O — R, naturally as
Spf R varies over all small affine opens of X, in §7.2. This will give rise to universal (hence natural)
morphisms of Witt complexes W, Q% o, — H*(W,Qx/0)(Spf R) which satisfy (i) and (ii) and which will
be explicitly checked to be isomorphisms (after p-adically completing W,.Q3, /o) by reducing, via the type
of argument sketched in Remark 5.3, to group cohomology calculations given in §6.3. O

Theorem 5.6 (Relative de Rham-Witt comparison). There are natural quasi-isomorphisms in the de-
rived category of Zariski sheaves of W,.(O) = Ajng/&r-Aing-modules

W% 0 ~ AQx 0 /Sr,

for all v > 1, such that the restriction map R : WH_le/O — WTQ;/O is compatible with the canonical
quotient map Aing/Er11Aint — Aing/ErAing.

27 As written, this isomorphism is natural but not canonical: it depends on the chosen sequence of p-power roots of unity.
To make it independent of any choices, the right side should be replaced by Hi(Wer/O) ®w,.(0) (Ker0r/(Ker 0,)2)®0
Here Ker 6,./(Ker §,)2 = gTAinf/nginf is a certain canonical rank-one free W, (O)-module, and so we are replacing the

right side by a type of Tate twist ’HZ(VT/:?ZI/O){%} This dependence arrises as follows: changing the chosen sequence of
p-power roots of unity changes p up to a unit in A;,¢: this does not affect Ln,, (which depends only on the ideal generated
by w), but does affect the forthcoming isomorphism in Remark 5.7(a) (see footnote 28).
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In a moment we will equip A{2x /o with a Frobenius and check that Theorem 5.5 implies Theorem 5.6,

from which we will then deduce Theorem 1.1; first we require some additional properties of the décalage
functor:

Remark 5.7 (Elementary properties of the décalage functor, I). Let A be a ring and f € A a non-zero-
divisor.

(a)

(Bockstein construction) One of the most important properties of the décalage functor is its relation
to the Bockstein boundary map. Let C' be a complex of f-torsion-free A-modules. From the definition
of nyC it is easy to see that if fiz € (n;C) is a arbitrary element, then z mod fC? is a cocycle of
the complex C/fC (since d(f‘x) is divisible by fi™1), and so defines a class 7 € H*(C/fC); this
defines a map of A-modules

(n;C) — H'(C/fC),  flz—T.

Next, the Bockstein Bocks : H*(C/fC) — H*1(C/fC) gives the cohomology groups H*(C/fC)
the structure of a complex of A/fA-modules, and we leave it to the reader as an important exercise
to check that the map

nyC — [H*(C/fC),Bocky],

given in degree ¢ by the previous line, is actually one of complexes, i.e., that the differential on n;C
is compatible with Bocky. Even more, the reader should check that the induced map

(n;C) @a A/fA — [H*(C/fC), Bocky]

is a quasi-isomorphism.
More generally, if D is an arbitrary complex of A-modules, then this can be rewritten as a natural®®
quasi-isomorphism

(LnsD) @4 A/fA S [H*(D @% A/ fA), Bocky]
of complexes of A/fA-modules.?’

(Multiplicativity) If g € A is another non-zero-divisor, and C' is a complex of fg-torsion-free A-
modules, then

ng1;C =1yC C Cl 5]

Noting that n; preserves the property the g-torsion-freeness, there is no difficulty deriving to obtain
a natural equivalence of endofunctors of D(A)

Lng o Lns ~ Lngyy.

(Coconnective complexes) Let D?_gf(A) be the full subcategory of D(A) consisting of those complexes
D which have HY(D) = 0 for i < 0 and H°(D) is f-torsion-free. Any such D admits a quasi-
isomorphic replacement C' = D, where C is a cochain complex of f-torsion-free A-modules supported
in positive degree (e.g., if D is bounded then pick a projective resolution P = D and set C := 72°P).
Then

LnyD =nsC CC 5 D,

whence Ln; restricts to an endofunctor of D?_%f(A), and on this subcategory there is a natural
transformation j : Lny — id. In fact, all our applications of the décalage functor take place in this
subcategory.

28Continuing the theme of the previous footnote, the left side depends only on the ideal fA while the right side currently
depends on the chosen generator f; to make the construction and morphism independent of this choice, each cohomology
group on the right should be replaced by the twist H*(C ®HA A/fA) ®ay5a (f*A/f*TLA).

29Curiously, this shows that the complex (LnyD) ®Y4 A/fA, which a priori lives only in the derived category of A/fA-
modules, has a natural representative by an actual complex.
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(d) (Functorial bound on torsion) We maintain the hypotheses of (¢). Then the morphism j : Ln;D — D
induces an isomorphism on H°: indeed,

HO(Lng D) = Kex(nsC)° % (nsC)") = Ker(C* % C') = H(D).

More generally, for any i > 0, the map j : H*(Ln;D) — H*(D) has kernel H*(LnyD)[f?] and image
fiH!(D): indeed, the composition

H'(D)/H'(D)[f] = H'(Ln;D) = H'(D),
where the first isomorphism is Lemma 2.2, is easily seen to be multiplication by f?, whence the

assertion follows.

It may be useful to note that this f-power-torsion difference between D and its décalage Ln;D
can be functorially captured in the derived category, at least after truncation. More precisely,

multiplication by f? defines a map 7</C' — 75';C, which induces a natural transformation of
>0

functors “f%” : 7% — 71 Ly on D7 ¢(A) such that the compositions
s L TSiLﬁf i> Tgi, TSiLnf i) <0 i) TSiLﬂf
are both multiplication by f°.
(e) (a)—(d) have obvious modifications for complexes of sheaves of A-modules on a site.
As promised, we will now equip AQ2x,» with a Frobenius:

Lemma 5.8. The complex of sheaves of Ains-modules ASdx o is equipped with a Frobenius-semi-linear
endomorphism @ which becomes an isomorphism after inverting £, i.e.,

@ : AQx/O ®]{‘&inf Ainf[%] = AQ%/O ®kinf A&inf[%*]

(recall that € = ©(€)).

Proof. The Frobenius automorphism ¢ on the period sheaf A, x induces a Frobenius automorphism
@ on its derived image C' := Rv,Ains x, which by functoriality then induces a quasi-isomorphism of
complexes of Zariski sheaves
¢:Ln,C = L) C-
We follow this map by
Lny(uyC = LngLn,C — Ln,C

to ultimately define the desired Frobenius ¢ : L7,C — L7,,C, where it remains to explain the previous
line. The equality is a consequence of Remark 5.7(b) of the previous remark since p(u) = €u; the
arrow is a consequence of Remark 5.7(c) since H°(Ln,C) has no £-torsion.30 Since the arrow becomes
a quasi-isomorphism after inverting 5, we see that the final Frobenius ¢ : Ln,C' — Ln,C becomes a
quasi-isomorphism after inverting &. O

Proof that Theorem 5.5 implies Theorem 5.6. As in the proof of the previous lemma we write C' :=
Rv, Aine x, which we equipped with a Frobenius-semi-linear automorphism ¢. Thus we have

oo

x —
W% 0 = [H.(Wer/o)aBOCkgr] (by Theorem 5.5)
= [H’((LWC)/@), BOCkgP] (rewriting for clarify)
~ (LngTLn#C)/gr (by the Bockstein—Ln relation, i.e., Rmk. 5.7(a))
= (Lng ,C) /% (by Rmk. 5.7(b))
w;r ~
— (Ln,C) /&, (functoriality and @~ " (&-u) = u)
which proves Theorem 5.6. O

30 Proof. H%(C) = vsAjng,x has no p-torsion since Aj,¢ y has no p-torsion by Corollary 4.6; thus #%(Ln,.C) = HO(0)
by Remark 5.7(d). But since H°(C) has no p-torsion, it also has no ¢(u) = £u-torsion, thus has no &-torsion. O
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Now we deduce the beginning of Theorem 1.1 from Theorem 5.6:

Theorem 5.9. If X is moreover proper over O, then RUx(X) := RI'z.:(X, AQx /o) is a perfect complex
of Aing-modules with the following specialisations, in which (i) and (i) are compatible with the Frobenius
actions:

(i) Etale specialization: RT (%) ®H&inf W(C®) ~ RT«(X,Z,) ®%p W(C).
(ii) Crystalline specialization: RI'4(X) ®kinf W (k) ~ RL crys (X1 /W (K)).
(i4i) de Rham specialization: RT 5 (X) ®H&inf10 O ~ RT4r(X/0).

Proof. We prove the specialisations in reverse order. Firstly, since R[4 (%) is derived &-adically com-
plete,3! general formalism implies that RT4(X) is a perfect complex of Aj,e-modules if and only if
RT4 (%) ®k ; Aing/EAsys is a perfect complex of Ajne/EAins = O-modules. But Theorem 5.6 in the case

r = 1 implies that
R4 (%) @y, Aint/EAins ~ RT70r(X, 9% 0) = RTar(X/0),

which is indeed a perfect complex.3?
It follows that R4 (%) ®kinf W (k) is a perfect complex of W (k)-modules; since W (k) is p-adically
complete, any perfect complex over it is derived p-adically complete and so

RTA(X) @y, W (k) = Rlim,(RTA(X) @ W, (k))
= Rlim, (R (X) @5, W, (0) @y, (o) Wi (k)
= Rlimy (RT za: (X, W, Q% /0 @, 0y Wr(k)))

where the final line uses Theorem 5.6. But the canonical base change map W, Q5% e ®H17V,. ©) W,.(k) =
W Q% Jk is a quasi-isomorphism for each r > 1 by Remark 6.4(vii), and so we deduce that

RTA(X) @5, W (k) = Rlim, RT 70 (Xg, W Q%, /1) = Rlerys(X5/W (k).

It remains to prove the étale specialisation; we prove the stronger (since p becomes invertible in
W (C?)) result that RT's(X) ®kinf Aing[ 2] =~ RT4 (X, Zp) % Aing[2]. Since L, only effects complexes up

© P H
[

to pi-torsion in degree i (to be precise, use the morphisms “x%” on the truncations of AQx 10 = RBviAig x,
as in Remark 5.7), the kernel and cokernel of HY (X) — HE, (X, RviAing x) = Hiroét (X, Aing, x ) are killed

4 P
by u*. The key to the étale specialisation is now the fact that the canonical map

RTe(X, Zp) @7, Aint — R prost (X, Aint,x)

has cone killed by W(m®) > u (this is deduced from Theorem 4.3 by taking a suitable limit; see [16,
Prf. of Thm. 8.4]); inverting p completes the proof. O

31 «proof”. If f,g are non-zero-divisors of a ring A, and D is complex of A-modules which is derived g-adically
complete, then we claim that Ln;D is still derived g-adically complete: indeed, this follows from the fact that a com-
plex is derived g-adically complete if and only if all of its cohomology groups are derived g-adically complete, that
H'(LnyD) = HY(D)/H'(D)[f] for all i € Z by Lemma 2.2, and that kernels and cokernels of maps between derived
g-adically complete modules are again derived g-adically complete. For a reference on such matters, see The Stacks
Project, Tag 091N.

It is tempting to claim that the previous paragraph remains valid for the complex of sheaves RviAjn¢ x (which is indeed
derived £-adically complete, since Ry preserves the derived £-adic completeness of the pro-étale sheaf Ajng, x ), which would
complete the proof since RI'y,. (¥, —) also preserves derived &-adic completeness, but unfortunately the previous paragraph
does not remain valid for complexes of sheaves on a “non-replete” site (e.g., the Zariski site). In fact, it seems that the
derived &-adic completeness of Ry (X) is not purely formal, and requires the technical lemmas established in §7.1; therefore
we have postponed a proof of the completeness to Corollary 7.4. [J

32 Proof. By derived p-adically completeness, it is enough to check that RI'qg(X/O) ®H(‘9 O/pO = RI4r(X ®o
O/pO/(O/pO)) is a perfect complex of O/pO-modules; this follows from the facts that Q;e®o(9/p0/((9/po) is a per-

fect complex of Oxg 0 /po-modules by smoothness, and that the structure map X ®o O/pO — Spec O/pO is proper, flat,
and of finite presentation. [J
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We next discuss the rest of Theorem 1.1 (using the same enumeration):

Theorem 5.10. Continuing to assume that X is a proper, smooth formal scheme over O, then the indi-
vidual Aing-modules HY (X) := H}, (X, AQx o) vanish fori > 2dim X and enjoy the following properties:

(iv) Hi(X) is a finitely presented Asne-module;

(v) H&(f)[%] is finite free over Ainf[%};

(vi) Hi(X) is equipped with a Frobenius semi-linear endomorphism ¢ which becomes an isomorphism
after inverting & (or any other preferred generator of Ker0), i.e., ¢ : H&(%)[%] = H&(%)[%]

(vii) Etale: H{(X)[1] = Hi (X, Zp) ®z, Ame[L].

1 1
Iz f
(viii) Crystalline: there is a short exact sequence

0 — HL(X) @n, , W(k) = Hipyo(X3/W (k) — Tory™ (HIFL(X), W(k)) — 0

crys
(iz) de Rham: there is a short exact sequence

0 — Hi(X)®a, 0O — Hig(X/O0) — HIH(X)[E] — 0

inf>

(x) If Hiyo(X/W (k) or H,((X/O) is torsion-free, then H{(X) is a finite free Aing-module.

crys

Proof. The étale and de Rham specialisations, i.e., (vii) and (ix), are immediate from the derived spe-
cialisations proved in the previous theorem.

As mentioned at the start of the previous proof, the complex RI'4 (%) is derived &-adically complete;
so to prove that its cohomology vanishes in degree > 2dim X, it is enough to note that the same is
true of RI'4(X) ®kinf Aing/€Ains ~ RT4r(X/O) (where we have applied the de Rham comparison of

Theorem 5.9).

(vi) follows from Lemma 5.8 and, similarly to the étale specialisation in Theorem 5.9, one can give
more precise bounds by observe that ¢ : AQyx,0 — AQyx,o is invertible on any truncation up to an
application of the morphism “£"”.

We now prove (iv) and (v) by a descending induction on 4, noting that they are trivial when
i > 2dim X. By the inductive hypothesis we may suppose that all cohomology groups of 77¢RI's(X)
are finitely presented and become free after inverting p, whence they are perfect A -modules by Theo-
rem A.2(ii). It follows that the complex of Aj,e-modules 7> RT4(X) is perfect, which combined with the
perfectness of RI'y(X) implies that 7<!RT'4 (X) is also perfect. Thus its top degree cohomology group
HY(7<'RT4 (X)) = H(X) is the cokernel of a map between projective Aj,r-modules, and so is finitely
presented.

To prove (v) we wish to apply Corollary A.4, and must therefore check that H} (X)[-L] is a finite free

i
Aing[-]-module of the same rank as the W (k)-module M ®,, . W (k). Part (vii) implies that

1 ]
pp
Hi (:{)[L} >~ Hlt(_X7 Qp) ®Qp Ainf[plu]v

which is finite free over Aj,¢[--], while the derived crystalline specialisation of Theorem 5.9 implies that

)
H (X) @ay, W(R)[2] 55 Hlyyo (X0 /W (R)[3].

(There are no higher Tor obstructions since Hj (X) [%] is finite free over Ainf[%] by the inductive hypothesis
for x > i.) Therefore we must check that the following equality of dimensions holds:

dimo, Hjy(X,Qp) = dimy 1) i (%W (D)) (dim)

This can be proved in varying degrees of generality as follows:
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- In the special case that X is obtained by base change from a smooth, proper scheme over the
ring of integers of a discretely valued subfield of C (which is perhaps the main case of interest for
most readers), then the equality (dimy) is classical (or a consequence of the known Crystalline
Comparison Theorem): the crystalline cohomology (with p inverted) of the special fibre identifies
with the de Rham cohomology of the generic fibre, which has the same dimension as the Q,-étale
cohomology by non-canonically embedding into the complex numbers and identifying de Rham
cohomology with singular cohomology.

- Slightly more generally, if X is obtained by base change from a smooth, proper formal scheme
over the ring of integers of a discretely valued subfield of C, then (dimy) follows from the rational
Hodge-Tate decomposition [16, Corol. 1.8] (which is an easy consequence of the results in the
remainder of these notes) and the same identification of crystalline and de Rham cohomology as
in the previous case.

- In the full generality in which we are working (i.e., X is an arbitrary proper, smooth formal scheme
over 0), then the equality (dimy) follows from our general Crystalline Comparison Theorem

Hérys(%k/w(k)) Qw (k) Berys = Hi, (X%, Zp) @z, Berys
(Prop. 13.9 and Thm. 14.5(i) of [BMS]), whose proof we do not cover in these notes.?3

Finally we must prove (viii) and (x): but (viii) follows from the derived form of the crystalline
specialisation in Theorem 5.9, part (v), and Lemma A.5, while (x) follows by combining (viii) or (ix)
with Corollary A.3. O

This completes the proof of Theorem 5.9, or rather reduces it to the p-adic Cartier isomorphism
of Theorem 5.5. The remainder of these notes is devoted to sketching a proof of this p-adic Cartier
isomorphism.

6 WITT COMPLEXES

This section is devoted to the theory of Witt complexes. We begin by defining Witt complexes and
Langer—Zink’s relative de Rham—Witt complex, and then in §6.2 present one of our main constructions:
namely equipping certain cohomology groups with the structure of a Witt complex over a perfectoid
ring. We apply this construction in §6.3 to the group cohomology of a Laurent polynomial algebra and
prove that the result is precisely the relative de Rham—Witt complex itself; this is the key local result
from which the p-adic Cartier isomorphism will then be deduced in Section 7.

6.1 Langer—Zink’s relative de Rham—Witt complex

We recall the notion of a Witt complex, or F-V-procomplex, from the work of Langer—Zink [14].

Definition 6.1. Let A — B be a morphism of Z,)-algebras. An associated relative Witt complez, or
F-V-procomplex, consists of the following data (W2, R, F,V, \,.):

(i) a commutative differential graded W, (A)-algebra W} = €P,,5, W;" for each integer r > 1;

(ii) morphisms R : Wy, |, — R,y of differential graded W1 (A)-algebras for r > 1;

(iii) morphisms F : Wp | — F. W2 of graded W, (A)-algebras for r > 1;

(iv) morphisms V : FV? — Wy, of graded W, (A)-modules for r > 1;

(v) morphisms of W,.(A)-algebras A, : W,.(B) — WY for each r > 1 which commute with R, F, V.

such that the following identities hold:

- R commutes with both F' and V;

33Possibly (dimy) can be proved in this case by combining spreading-out arguments of Conrad-Gabber with the relative
p-adic Hodge theory of [16, §8], but we have not seriously considered the problem.
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- FV =yp;
- FdV = d:
- the Teichmiiller identity:3* Fd\,.1([b]) = \.([b])?~1d\.([b]) for b€ B, r > 1.

Example 6.2. If k is a perfect field of characteristic p and R is a smooth k-algebra (or, in fact, any
k-algebra, but it is the smooth case that was studied most classically), then the classical de Rham-Witt
complex W, Q% Jk of Bloch—Deligne—Illusie, together with its operators R, F,V and the identification

At We(R) = WTQ%M, is a Witt complex for k — R.

There is an obvious definition of morphism between Witt complexes. In particular, it makes sense to
ask for an initial object in the category of all Witt complexes for A — B:

Theorem 6.3 (Langer—Zink, 2004). There is an initial object (WTQFB/A,R7 F,V,\.) in the category of
Witt complexes for A — B, called the relative de Rham-Witt complex. (And this agrees with W, Jk
of the previous example when A =k and B = R).

Remark 6.4. (i) The reason for the “relative” in the definition is that there has been considerable
work recently, mostly by Hesselholt, on the absolute de Rham-Witt complex W, Q% “= W, Q% /Fl,"

(ii) Given a Witt complex for A — B, each Wy is in particular a commutative differential graded
W,.(A)-algebra whose degree zero summand is a W,.(B)-algebra (via the structure maps A,.). There
are therefore natural maps of differential graded W,.(A)-algebras Q3 )y (1) = W) forallr > 1
(which are compatible with the restriction maps on each side).

In the case of the relative de Rham—-Witt complex itself, each map Q"/VT(B)/WT(A) — WTQB/A is
surjective (indeed, the elementary construction of WTQE/A is to mod out Q;/VT(B)/WT(A) by the
required relations so that the axioms of a Witt complex are satisfied) and is even an isomorphism
when r =1, i.e., Q;B/A 5 W1Q;3/A.

(iii) If B is smooth over A, and p is nilpotent in A, then Langer-Zink construct natural comparison
quasi-isomorphisms RI c,ys(B/W,.(A)) = W,Q% A> where the left side is crystalline cohomology
with respect to the usual pd-structure on the ideal VW, _1(A) C W,.(A) (note that the quotient
Wi (A)/VW,_1(A) is A) defined by the rule v, (V(«a)) := P V(a™). This is a generalisation of

n!

Ilusie’s classical comparison quasi-isomorphism RTcyys(R/W,(k)) = W,Q3, Ik

(iv) Langer-Zink’s proof of the comparison quasi-isomorphism in (iii) uses an explicit description of
WTQ;B,/A in the case that B = A[T1,...,Ty]; in [BMS, §10.4] we extend their description to B =
A[TE, L TFEY.

(v) If B — B’ is an étale morphism of A-algebras, then W,.(B) — W,.(B’) is known to be étale and it
can be shown that W, Qp 4 @w, (p) W,.(B") = W%, 4 [BMS, Lem. 10.8]. From these and similar
base change results one sees that if Y is any A-scheme, then there is a well-defined Zariski (or even
étale) sheaf WTQ’{,/A on Y whose sections on any Spec B are WTQ%’/A'

(vi) If now X is a p-adic formal scheme over A, then there is similarly a well-defined Zariski (or étale)
sheaf W,.Q% /A whose sections on any Spf B are the following (identical®®) p-adically complete

W,.(B)-modules

Wel¥g )y WeQ ) I Weldp e py/ca/pe a)

34The Teichmiiller identity follows from the other axioms if W} is p-torsion-free:

PAR(BD)P ™ A ([B]) = dAr ((bF) = dFAr([b]) = FdV FAr([b]) = Fd(Ar([b])V (1)) = F(V(1))dAr([b]) = pFdAr([b)).

35For the elementary proof that the three completions are the same, see Lem. 10.3 and Corol. 10.10 of [BMS].
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(vii) (Base change) In [BMS, Prop. 10.14] we establish the following important base change property:
if A — A’ is a homomorphism between perfectoid rings, and R is a smooth A-algebra, then the
canonical base change map W,.Q7}, /4 OW,.(4) W,.(A") — Wik ar s is an isomorphism; moreover,

the W, (A)-modules W, Q% , and W, (A') are Tor-independent, whence W, Q3 ®]II;V,.(A) W.(A") S

Welhs a0 /A

In conclusion, in the set-up of Section 5, the relative de Rham—Witt complex W,.Q5 e is an explicit
complex computing both de Rham and crystalline cohomologies.

6.2 Constructing Witt complexes

From now until the end of Section 6 we fix the following:

- A is a perfectoid ring of the type discussed in §3.3, i.e., p-torsion-free and containing a compatible
system (p,(p2, ... of primitive p-power roots of unity (whlch we fix); let e € A” and p,&,&,, &, €
W (A) be the elements constructed there.

- D is a coconnective (i.e., H*(D) = 0 for * < 0), commutative algebra object®¢ in D(W(A”))
which is equipped with a ¢-semi-linear quasi-isomorphism ¢p : D = D (of algebra objects), and
is assumed to satisfy the following hypothesis:

(W1) H°(D) is p-torsion-free.

Here we will explain how to functorially construct, from the data D, pp, certain Witt complexes over A:
this will lead to universal maps from de Rham—Witt complexes to cohomology groups of D, which will
eventually provide the maps in the p-adic Cartier isomorphism.

Example 6.5. The main examples are A = O with the following coconnective, commutative algebra
objects over Aj,r = W (O?), which will be studied in §6.3 and §7.2 respectively:

(i) RI(Z4, W(Ab)[Ulil/pm7 - 7Uczltl/pm])7 or a p-adically complete version thereof.

(ii) RTprost(Sp R[%],Ainﬁ x), where Spf R is a small affine open of a formally smooth O-scheme with
generic fibre X.

We first explain our preliminary construction of a Witt complex from the data D, ¢p, which will then
be refined. In this construction, indeed throughout the rest of the section, it is important to recall from
Section 3 the isomorphisms 6, : W (A") /€. 5 W, (A), which we often implicitly view as an identification.
In particular, for each r > 1, we may form the coconnective3” derived algebra object

D/& =D &%y 4oy Wi(A") /& = D Dy (ary.g, Wrl4)
over W(A") /&, = W,.(A), and take its cohomology
W.( )pre = H.(D ®W AP) (Ab)/fr)

to form a graded W, (A)-algebra. Equipping these cohomology groups with the Bockstein differential
Bockg : Wi(D)pre = WL (D) pre associated to the distinguished triangle

D&y oy WA /& 5 D&y ) W(AY)/E — Dby W(A)/E,

makes W2 (D)pre into a differential graded W, (A)-algebra.

36By this we mean that D is a commutative algebra object in the category D(W (A”)) in the most naive way: the
constructions can be upgraded to the level of Eoo-algebras, but again this is not necessary | for our existing results.

37From assumption (W1) and the existence of ¢, it follows that H9(D) has no ¢" (1) = &.pu-torsion, hence no &-torsion;
so D/&, is still coconnective.
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Next let , ° .
R : T+1(D)pre — Wr (D)pre

F ;+1(D)prc — W;(D)pm
V. W;(D)pre — W;+1(D)pre

be the maps on cohomology induced respectively by

e —1® —1 ~
D @y 4y W(A”) /&1 = D Dy (ar) W(A") /&

-~ id ®can. proj. =
D @y 4y W(A) [Er 1 FELPS D Oy ary W(A) /&
> idee () P
D ®Hﬂv(,4b) W(Ab)/gr =D ®H1;V(Ab) W(Ab)/§T+1,
which are compatible with the usual Witt vector maps R, F,V on W,.(A) = W(Ab)/gT thanks to the

second set of diagrams in Lemma 3.5.
As we will see in the proof of part (ii) of the next result, R’ must be replaced by3®

R:=0,("R 1 (D)pre = Wi (D) pre
if we are to satisfy the axioms of a Witt complex.

Proposition 6.6. The data (e (D)pre, R, F, V') satisfies all those axioms appearing in the definition of
a Witt complex (Def. 6.1) which only refer to R, F,V (i.e., which do not involve the additional ring B
or the structure maps \,.). More precisely:

(i) W2(D)pre is a commutative’® differential graded W,.(A)-algebra for each r > 1.

(i) R’ is a homomorphism of graded rings, and R is a homomorphism of differential graded rings;
(i11) V is additive, commutes with R' and R, and is F-inverse-semi-linear (i.e., V(F(x)y) = 2V (y));
(iv) F is a homomorphism of graded rings and commutes with both R' and R;

(v) FAV =d;

(vi) FV is multiplication by p.
Proof. Part (i) is a formal consequence of D being a commutative algebra object of D(W (A”)).

(ii): R’ is a homomorphism of graded rings by functoriality; the same is true of R since it is twisted
by increasing powers of an element. Moreover, the commutativity of

Ert1

0 ——W(A") /&y == W(A) /€2, —= W(A") /&1 —0

T

0 = W)/ —m W(A) /8 ——— W(A) /& —0
and functoriality of the resulting Bocksteins implies that

n d n
Wi (D)pre ——= Wrirll (D)pre

R'J/ leT(f)R/

W;L(D)pre Y Wﬁ+1(D)pre

commutes; hence the definition of R was exactly designed to arrange that it commute with d.

[Cpr]—1
[cpfﬂlfl € Wr(A).

39Unfortunately this is not strictly true: if p = 2 then the condition that 22 = 0 for = € W;)dd(D)prC need not be true;
but this will be fixed when we improve the construction.

38The reader should use the identities of §3.3 to calculate that gr &) =
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(iii): V is clearly additive, and it commutes with R’ since it already did so before taking cohomology.
Secondly, the F-inverse-semi-linearity of V follows by passing to cohomology in the following commutative
diagram:

D/&11 @ DfEryy —2 = D/
id®<ﬂ“(§)T
D/& 41 @ D/E, e"(E)
can. proj.®idl
D/& @" D /¢ —= D/¢,

It now easily follows that V also commutes with R'.

(iv): F is a graded ring homomorphism, and it commutes with R’ by definition, and then easily also
with R.

(v): This follows by tensoring the commutative diagram below with D over W (A”), and looking at
the associated boundary maps on cohomology:

0 ——= W(A") /g ——= W(A")/& ——= W(A") /e, —=0

0 ——= W(A) /& ——= W (A) /&6 1 —= W(A) /&1 —0
0 —— W(A°) /&1 ——= W(A") /&2, ——= W(A") /61 —0

(vi): This follows from the fact that ,(o"1(¢)) = p for all 7 > 1 (which is true since 6, (p(€)) =
T(cp( )) = F(0,41(¢)) = FV(1) = p, where the third equality uses the second diagram of Lemma
3.5). O

Unfortunately, there are various heuristic and precise reasons*’ that W (D)pre is “too large” to
underlie an interesting Witt complex over A, and so we replace it by

Wi (D) = ([Gpr] = D)"W(D)pre € Wi (D)pre-

Lemma 6.7. The W, (A)-submodules W(D) C WI(D)pre define sub differential graded algebras of
W2 (D)pre, for each v > 1, which are closed under the maps R, F,V (and hence Proposition 6.6 clearly
remains valid for the data (W2 (D),R,F,V) ).

Proof. This is a consequence of the following simple identities, where z € W}, | (D)pre and y € W} (D)pre:
oy ([l =1\" Nl n ol
R(([Gre] =1)"2) = (Feg= ) ([Gprer] = D" RI(2) = ([¢pr] = 1)" R ()

F(([Cpr+1] = 1)"z) = (F¢prn1] = 1)"F(z) = ([Gr] = 1)"F ()
V(([Gpr] = 1)"y) = V(F([Gpre2] = 1)"y) = ([Gpr+1] = )"V (y)
Note that the first identity crucially used the definition of the restriction map R as a multiple of R’. [

40For example, suppose that B is an A-algebra and that we are given structure maps A, : W,(B) — W2(D) under
which (W‘ (D), R, F,V,A\r) becomes a Witt complex for A — B, thereby resulting in a universal map of Witt complexes
Ay W Q2 B/a W2 (D); then from the surjectivity of the restriction maps for WTQ;g/A and the definition of the restriction

map R for W (D)pre, we see that

n n R* n n nyAIN Cprl—=1\ny,m
12 € () IOV o (D)pre 2 W (D)pre) € ) 0r(6) W2 (D)pre = (1) (Z5=7)"WE (D)pre
s>1 s>1 s>1

The far right side contains, and often equals in realistic situations, ([(p]—1)"W?(D)pre, which motivates our replacement.
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Next we relate the groups W}*(D) to the cohomology of the décalage Ln,D of D. From the earlier
assumption (W1) and Remark 5.7(c) there is a canonical map Ln,D — D, and by imposing the following
two additional assumptions on D we will show in Lemma 6.9 that the resulting map on cohomology

H (L0, D &y oy W(A)/€) — H'(D &y W(A)/E) = W (D) pre

is injective and has image exactly W (D).
From now on we assume that D satisfies the following assumptions (in addition to (W1)):

(W2) The cohomology groups H*(Ln,D ®HI;I/(A") W(Ab)/gr) are p-torsion-free for all r > 0.

(W3) The canonical base change map LnuD®H§V(Ab)W(Ab)/E;' — Ln[gpr],l(D®H;V(A.,)W(Ab)/§~7.)
is a quasi-isomorphism for all » > 1.

Remark 6.8 (Elementary properties of the décalage functor, II — base change). We explain the base
change map of assumption (W3). If « : R — S is a ring homomorphism, f € R is a non-zero-divisor
whose image a(f) € S is still a non-zero-divisor, and C' € D(R), then there is a canonical base change
map

(LnsC) @% S — Lia(p (C ®% S)
in D(S) which the reader will construct without difficulty. This base change map is not a quasi-
isomorphism in general,*! but it is in the following cases:

(i) When R — S is flat. Proof Easy. O

(i) When S = R/gR for some non-zero-divisor g € R (i.e., f, g is a regular sequence in R) and the coho-
mology groups of C®% R/ fR are assumed to be g-torsion-free.*? Proof: Since the base change map
is always a quasi-isomorphism after inverting f, it is equivalent to establish the quasi-isomorphism
after applying — ®H;3 JoR R/(f,g), after which the base change map becomes the canonical map

[H.(C ®Hé R/fR)7BOCkf] ®H}‘%/9R R/(f7 g) . [H.(C ®Hé R/gR ®Hé/gR R/(f7 g))vBOCkf mod gR]

by Remark 5.7(a). But our assumption implies that the left tensor product ®% /gr 18 equivalently
underived, and that hence it is enough to check that the canonical map H"(C ®F R/fR) ®r/gr

R/(f,9) = H"(C &% R/(f,g)) is an isomorphism for all n € Z; but this is again true because of
the g-torsion-freeness assumption. [

In the particular case of (W3), we are base changing along 6, : W (A?) — W (A") /&, = W,.(A), noting
that 6,(u) = [(pr] — 1 € W,.(A) is a non-zero-divisor by Remark 3.16. There is no a priori reason to
expect hypothesis (W3) to be satisfied in practice, but it will be in our cases of interest.*3

Lemma 6.9. The aforementioned map on cohomology

H (LD @Yy oy W(A) /&) —> H(D @y g0y W(A) /&) = W (D) e 1)
is injective with image W' (D) = ([(pr] — 1)" W2 (D)pre, for all T > 1 and n > 0.
Proof. The canonical map Ln,D — D induces maps on cohomology whose kernels and cokernels are
killed by powers of u, by Remark 5.7(d); hence the map (1) of W, (A)-modules has kernel and cokernel
killed by a power of 8, (1) = [(pr] — 1. But [(,r] — 1 divides p” by Remark 3.16, so from assumption (WV2)

we deduce that map (f) is injective for every r > 1 and n > 0.
Regarding its image, simply note that (}) factors as

H(Ln,D &y oy W(A) €)= B (Lige,p11(D &y ) W(A) /1)) — WE(D)pres

where the first map is the base change isomorphism of assumption (W3), and the second map has image
([Cpr] = 1)" W] (D)pre by Remark 5.7(d). O

410n the other hand, if C' € D(S) then the canonical restriction map Ln¢(Cla) — L5y (C)lp in D(A), which the
reader will also easily construct, is always a quasi-isomorphism.

42This was erroneously asserted to be true in the official announcement without the g-torsion-freeness assumption.

43Note in particular that (W3) is satisfied if the cohomology groups of D ®% W (A)/u are p-torsion-free; this follows

~ W (AP)
from Remark 6.8(ii) since & = p” mod pW (AP).
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We summarise our construction of Witt complexes by stating the following theorem:

Theorem 6.10. Let A and D,pp be as at the start of §6.2, and assume that D satisfies assumptions
(W1)-(W3). Suppose moreover that B is an A-algebra equipped with W, (A)-algebra homomorphisms

Ar: Wy(B) — H°(D ®H17V(Ab) W (A®)/€,) making the following diagrams commute for all r > 1:

W1 (B) =2 HO(D/Ev1)  Wigr(B) 2 HO(D/Er1)  Wigr(B) —= HO(D/41)
Rl lchl Fl lcan. proj. VT TXWTJA(&)
Wo(B) —= HY(D/E,)  W(B) —= H(D/&,) W,.(B) —>> H'(D/%,)

Then the cohomology groups W (D) = H*(Ln,D ®H‘;V(Ab) W(Ab)/g,,) may be equipped with the structure
of a Witt complex for A — B, and consequently there are associated universal maps of Witt complexes

Ar WTQJ’B/A — W?(D)
(which are functorial with respect to D, @p and B, A, in the obvious sense).

Proof. Combining the hypotheses of the theorem with Lemma 6.7, we see that W} (D) satisfies all axioms
for a Witt complex for A — B, except perhaps for the following two: that 2% = 0 for z € W294(D),e
when p = 2; and the Teichmiiller identity. But these follow from the other axioms since W}(D) is
assumed to be p-torsion-free.4 O

Remark 6.11 (p-completions). In our cases of interest the complex D will sometimes be derived p-
adically complete, whence the complexes Ln,D and Ln, ®H‘;V (%) W(A®) /&, are also derived p-adically

complete (by footnote 31); then each cohomology group W(D) is both p-torsion-free (by assumption
(W2)) and derived p-adically complete, hence p-adically complete in the underived sense. So, in this
case, the associated universal maps W, Q7% s W(D) of the previous theorem factor through the

p-adic completion (W, Q7 / A); which was discussed in Remark 6.4(vi).

6.3 The de Rham—Witt complex of a torus as group cohomology

We continue to let A be a fixed perfectoid ring as at the start of §6.2, and we fix d > 0 and set
DE'P = DET i= Ry (24, W(A) U7/, Uy P7)),

where the i*™"-generator v; € Z? acts on W (A”)[UT'/P”™] via the W (A®)-algebra homomorphism

'Uk L [gk]UJk { :]
j J

(here k € Z[%], and e € A’ is well-defined since A® is a perfect ring). Here we will apply the construction
of §6.2 to D& to build a Witt complex W?(D2™P) for A — A[T*'], and show that the resulting universal
maps A% WeQdS iy 0 = W (D#™P) are in fact isomorphisms. This is the key local result from which
the p-adic Cartier isomorphism will be deduced in Section 7.

In order to apply Theorem 6.10 to D& we must first check that all necessary hypotheses are fulfilled;
we begin with the basic assumptions:

Lemma 6.12. D& is a coconnective algebra object in D(W (A®)) which is equipped with a p-semi-linear
quasi-isomorphism gy, : D8P = D&'P and satisfies assumptions (W1)-(W3).

44922 = 0 so 2 = 0, c.f., footnote 39. For the Teichmiiller identity see footnote 34.
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Proof. Certainly D®'P is a coconnective, commutative algebra object in D(W(Ab)), and it is equipped
with a ¢-semi-linear quasi-isomorphism g, : D&P 5 D#'P induced by the obvious Frobenius automor-
phism on W (A")[U*YP™] (acting on the coefficients as the Witt vector Frobenius ¢ and sending UF to
UP* for all k € Z[%] and i = 1,...,d). Also, HY(D#P) is p-torsion-free since p is a non-zero-divisor
of W (A”) by Proposition 3.15. Therefore D#'P satisfies the hypotheses from the start of §6.2, including
(W1).

Next we show that the cohomology groups of Lz, D ®]LI;[/(Ab) W(A")/g,« and D ®EI;V(Ab) W (A")/u are p-
torsion-free, i.e., that hypotheses (WW2) and (W3) (by footnote 43) are satisfied. This is a straightforward
calculation of group cohomology in terms of Koszul complexes, in the same style as the proof of Theorem
2.5. Indeed, there is a Z%equivariant decomposition of W(Ab)-modules

WU = P WUy,

B ka €2l 1]

where the generator ; € Z¢ acts on the rank-one free W (A”)-module W(A)UF" - -- US* as multiplication
by [e¥]. By the standard group cohomology calculation of RT s, (Z%, W (A*)U* ~--U§’i) as a Koszul
complex, this shows that

RUg (2, W AU )~ P Kwan (™ -1, [ ] - D).

B, ka€2 3]
It is now sufficient to show that the cohomology groups of 77, K @y (a») W(A?) /€, and K ®@w (a0 W(AY)/u
are p-torsion-free, where K runs over the Koszul complexes appearing in the sum.

Since it is important for the forthcoming cohomology calculations, we explicitly point out now that,
if kK € Z[%], then [¢¥] — 1 divides [¢¥] — 1 if and only if v,(k) < v, (k).

We will first prove that the cohomology of K ®yy(ap) W(A”)/pu is p-torsion-free. Lemma B.1 im-

d

plies that there is an isomorphism of W(A”)-modules H™(K) = W(A”)/([e*] — 1)("1), where k =
p~ Mim<i<a¥p(ki) and we have used that [¢¥] — 1 is a non-zero-divisor of W (A®) (so that the torsion term
of that lemma vanishes). But W(A”)/([e¥] — 1) is p-torsion-free since p, [¥] — 1 is a regular sequence®®
of W(A®), and so both H"*'(K)[u] and H™(K)/p = W(A®)/([e™in{k0}] — 1)(7{?:1) are p-torsion-free;
therefore H" (K ®yy (a») W (A”) /) is p-torsion-free.

Next we prove that the cohomology of 7, K ®yy(a») W(A®)/ :g:,, is p-torsion-free. Lemma B.2 implies
that 7, K = Ky ("] =1)/p, ..., ([e*4] —1)/p) if k; € Z for all i, and that 7, K is acyclic otherwise.

Evidently we may henceforth assume we are in the first case; then 6, induces an identification of complexes
of W(A”) /&, = W,.(A)-modules

¢ —1 [k 1)
[Grl=1 77 Gl =1 )7
and it remains to prove that the Koszul complex on the right has p-torsion-free cohomology. But

Lemma B.1 implies that each cohomology group of this Koszul complex is isomorphic to a direct sum of
copies of

MK @y any W(A) /& = Ky, (a) (

[Cpr]—1 [Cpr]—17

where j := —minj<j<qVp(ki/p") < r. The left module is p-torsion-free since W, (A) is p-torsion-free,
while the right module (which = W,.(A4) if j < 0, so we suppose 1 < j < r) can be easily shown to be
isomorphic to W,_;(A) via F7 : W,.(A) — W,._;(A) [Corol. 3.18, BMS], which is again p-torsion-free. [

WT(A) |:[ij]_1:| and WT(A)/[Cp.i]_l

Next we prove the existence of suitable structure maps:

45 Proof. We will show that ¥ — 1 is a non-zero-divisor of A’. If & € A" = %iileIp A satisfies efz = =, then

Ck/pix(i) =z for all 4 > 0, and so z(1) =0 for i > 0 since then Ck/f’i — 1 is a non-zero-divisor of A, just as at the end of
the proof of Proposition 3.15. O
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Lemma 6.13. There exists a unique collection of W,.(A)-algebra homomorphisms Ar grp WT(A[Iﬂ]) —
HO(De™P /&), for v > 1, making the diagrams of Theorem 6.10 commute and satisfying A gep([13]) = U;
fori=1,...,d.

Proof. The maps 6, induce identifications W(A")[Qﬂ/l"”]/é} = W,(A)[U*/?”] and thus HO(Dng/ET) =
W,.(A) [Qil]zd, where the latter term is the fixed points for Z¢ acting on W,.(4)[U*!] via

U = [¢H/PT Uk i=]
U i#]

(where the notation ¢k/P" was explained at the start of the proof of Theorem 2.5). Under this identifi-
cation of HY(D#P/¢,), it is easy to see that the maps cpg_ri), “canonical projection”, and xapg;';l (&) in the
diagrams of Theorem 6.10 are given respectively by:

- the ring homomorphism R : W41 (A)[UY?”] = W,.(A)[UF/P"] which acts as the Witt vector
Restriction map on the coefficients and satisfies R(UF) = Uf/p for all k € Z[%] andi=1,...,d;

- the ring homomorphism F : W1 (A)[UP”] — W,.(A)[UFY/P™] which acts as the Witt vector
Frobenius on the coefficients and fixes the variables;

- the additive map V : W,.(A)[UXY/P™] — W, (A)[UFP™] which is defined by V (aUF ... Uk) .=
V(Q)Ut - Uyt for all o« € W,(A) and ki, ..., ka € Z[2].
Therefore the proof will be complete if we show that there is a unique collection of W,.(A)-algebra
homomorphisms Ay grp : Wi (A[TE!]) — W,.(A)[UFYPT] commuting with R, F,V on each side and
satisfying A\ grp([13]) = U; for i =1,...,d.
To prove this, we first use the standard isomorphism of W,.(A)-algebras*®

W (AP S W ATHPT),  UF = (T (ke Z[i)
to define a modified isomorphism

T Wo (AU S W ALHT), uF e T (ke zfl)),
noting that the new maps 7, respect R, F,V on each side (the reader should check this by explicit
calculation). Therefore the collection of maps
-1

T,

Argip : Wi (A[LH]) = W (A[TFVPT]) =5 W (A) U7
satisfies the desired conditions (and their uniqueness was explained in the previous footnote). O

The previous two lemmas show that all hypotheses of Theorem 6.10 are satisfied, and so there are
associated universal maps of Witt complexes

A gy - Wl i) g — Wi (DEP).

,8rp

As already explained, the key local result underlying the forthcoming proof of the p-adic Cartier isomor-
phism will be the fact that these are isomorphisms:

Theorem 6.14. The map A7, : WTQZ[Zﬂ]/A — WI(D#™) is an isomorphism for each > 1, n > 0.

46This isomorphism is proved by localising the analogous assertion for A[Il/poo}, which is an easy consequence of [14,
Corol. 2.4]. The cited result also implies that W,-(A[T*1]) is generated as a W;-(A)-module by the elements VI([TF]), for
k€Z,j5>0,i=1,...,d, which proves the uniqueness of the maps Ar grp.
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Proof. We will content ourselves here with proving that AL, . = Al ®@w,(a) Wr(k) is an isomor-
phism,*” where x := A/\/pA is the perfect ring obtained by modding out A by its ideal of p-adically
topologically nilpotent elements. Recalling from Remark 6.4(vii) that the canonical base change map

WTQZ[Zil]/A Qw, a) Wr(k) — WTQZ[Iﬂ]/K is an isomorphism, this means showing that A\ in-

7,8rp, Kk
duces an isomorphism W% .1y, = Wi (DeP) ®w,.(a) Wy (x); this will turn out to be exactly Illusie-
Raynaud’s Cartier isomorphism for the classical de Rham—Witt complex.

We now begin the proof that A7, . is an isomorphism. By the Kiinneth formula and the standard
calculation of group cohomology of an infinite cyclic group, we may represent D®P by the particular
complex of W (A®)-modules

d
DEv = @ [WAWF 1w o)

i=1
where each length two complex is
byr7EL/PT vizd byrrrEL/P> k k k 1
W)U | = WA ] U= (-0 (k€ Z[)).
(Note: although we previously used D& to denote RL(Z?, W (A")[U*/?™]) in a derived sense, in the
rest of this proof we have this particular honest complex of flat W (A®)-modules in mind when writing
D#'P ) This length two complex obviously receives a injective map, given by the identity in degree 0 and
by multiplication by p in degree 1, from
DED, = [W(A)UF) » W oH], vk e ERUE (ke ),

int,? %

and tensoring over i = 1,...,d defines a split injection of complexes of W (A®)-modules*®

n

DEP = Q) DEP, — DE™.

int int,?
i=1

The content of the second sentence of the final paragraph of the proof of Lemma 6.12 was exactly that
this inclusion has image in 7, D#P and that the induced map q : D P < 1, D#P is a quasi-isomorphism.
The next important observation (which is most natural from the point of view of ¢g-de Rham com-

plexes) is that there is an identification DE¥ ®yyar) W(K) = Q) i21y jyyr ()¢ indeed, the canonical

projection 4> — A/pA — x sends ¢ to 1, and so the projection W (A”) — W (k) sends ([¢¥] —1)/u =
1+ [e] + -+ [¢]F! to k, whence
grp - +1 Uf»—)ka +1 .
DEP @y any W(K) = Q) |W(B)U =" W)U =y 011w i)
i=1

The final identification here is most natural after inserting a dummy basis element dlog U; in degree one
of each two term complex.

Base changing the Bockstein construction®® along W (A”) — W (k) therefore yields isomorphisms of
complexes of W,.(k)-modules

W (DEP)@w, 4y Wi (k) = [H* (1, DEP @y, 40y W (K) /"), Bockyr ] 5 [H (0 (o w11/ w ) @y, 3, Wr (8)), Bockyr]

47To then deduce that AL or itself is an isomorphism, one applies a form of Nakayama’s lemma exploiting the fact that

(the non-finitely generated W (A)-modules) WTQZQil]/A and W (D®'P) admit compatible direct sum decompositions

into certain finitely generated W,.(A)-modules for which Nakayama’s lemma is valid; see [Lem. 11.14, BMS] for the details.

48The complex Dlgl’ftp (resp. Dlgrfsz) is in fact the “g-de Rham complex” [E]_Q;V(Ab)[gil]/W(Ab)

. b + b +1 “cOCi — b
(resp. [E]_QW(Ab)[U;U]/W(A")) of W(A")[UF1] (resp. W (A®)[U"']) associated to the element q = [¢] € W (AP).

OIf o : R — S is a ring homomorphism, f € R is a non-zero-divisor whose image a(f) € S is still a non-zero-divisor, and
C € D(R), then there is a base change map [H*(C ®% R/fR), Bocky] ®r/fr S/a(f)S — [H*(C Q% S/a(f)S), Bocky (5]
of complexes of S/a(f)S-modules; it is an isomorphism if the R/ fR-modules H*(D ®% R/fR) are Tor-independent from
S/a(f)S, as the reader will easily prove (c.f., Remark 6.8(ii)).

Here we are applying this base change along the canonical map W(Ab) — W (k), which sends ET to p”, and the complex
N Dgrp. The Tor-independence condition is satisfied in this case since the W,.(A)-modules W;!(Dgrp) are Tor-independent
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But the complex on the right (hence on the left) identifies with WTQ;[Tﬂ] /n by the de Rham-Witt

Cartier isomorphism of Illusie-Raynaud [11, §IIL.1], and the resulting map

W rsya @w,a) We(k) =2 Wiy, 2 WHDEP) @, (a) Wi (k)

is precisely A? ., ¢ this is proved by observing that the above isomorphisms (including the de Rham—
Witt Cartier isomorphism) are all compatible with multiplicative structure, whence it suffices to check
in degree 0, which is not hard (see [Thm. 11.13, BMS] for a few more details). As we commented at
the beginning of the proof, the canonical base change map of relative de Rham-Witt complexes in the

previous line is an isomorphism, and so in conclusion A, . is an isomorphism. O

7 'THE PROOF OF THE p-ADIC CARTIER ISOMORPHISM

This section is devoted to a detailed sketch of the p-adic Cartier isomorphism stated in Theorem 5.5.
We adopt the set-up from the start of Section 5, namely

- C is a complete, non-archimedean, algebraically closed field of mixed characteristic; ring of inte-
gers O with maximal ideal m; residue field k.

- We pick a compatible sequence (p, (y2,- - € O of p-power roots of unity, and define , &, &, E,é} €
Ains = W(Ob) as in §3.3.

- X will denote various smooth formal schemes over O.

7.1 Technical lemmas: base change and global-to-local isomorphisms

Here in §7.1 we state, and sketch the proofs of, certain technical lemmas which need to be established
as part of the proof of the p-adic Cartier isomorphism. We adopt the following local set-up: let R be
a p-adically complete, formally smooth O-algebra and X := Spf R, with associated generic fibre being
the rigid affinoid X = Sp R[%]. We will often impose the extra condition that R is small, i.e., that there
exists a formally étale map (a “framing”) O(T*') = O(TE, ... ,Tfl> — R; we stress however that
we are careful to formulate certain results (e.g., Lemma 7.1) without reference to any such framing (its
existence will simply be required in the course of the proof).

Firstly, as explained at the end of Remark 5.2 (taking 7 = Xza, and C = Rv, Ay x ), there is a
natural global-to-local morphism L7, RT'z.: (X, RviAing x) — RUza: (X, AQx/0) of complexes of Aju¢-
modules; this may be rewritten as

mgg,%t i= L0, RT proet (X, Aint,x) — Rz (X, AQx 0). (t1)

There is an analogous global-to-local morphism of complexes of W,.(O)-modules

—~——proét

WrQr/o = L, -1 R proee (X, Wi (O%)) — RTza:(X, Ly, -1 Rv. W, (0%)). (t2)

Thirdly, recalling Corollary 4.6 that 6, : Aine x/ &5 WT(@}) (which we continue to often implicitly view
as an identification), there is a base change morphism (see Remark 6.8) of complexes of W,.(O)-modules

roét ;- ~ ~ —~——proét
AQII){/(’;/&-T = LnuRFproét (Xa Ainf,X) ®kinf Ainf/grAinf — Ln[cpr]flRPproét (xa Wr (O;r()) = WTQR/O .
(t3)

As we have commented earlier, global-to-local and base change morphisms associated to the décalage
functor are not in general quasi-isomorphisms; remarkably, they are in our setting:

from Wy (k): indeed, the proof of Lemma 6.12 shows that the cohomology groups of nuDgrp/g,« are direct sums of W;.(A)-
modules of the form
1

}, and WAA)/E?%, 1<j<r,

[C,1-1
[Cpr]-1

W, (A), Wi (A) [

which are Tor-independent from W,.(k) by Lems. 3.13 & 3.18(iii) and Rmk. 3.19 of [BMS].
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Lemma 7.1. If R is small then maps (t1), (t2), and (t3) are quasi-isomorphisms and, moreover:

—— &t
(i) the cohomology groups of WTQI;;Z are p-torsion-free;

(i) if R is a p-adically complete, formally étale R-algebra, then the canonical base change map
— 6t —~ — ét
W,«QZ/O(CQ Lw, (Wi (R) — W,«QF});;CO is a quasi-isomorphism.

The key to proving Lemma 7.1, and to performing necessary auxiliary calculations, is the Cartan—
Leray almost quasi-isomorphisms of §4.3, for which we must assume that R is small and fix a framing
O(T*') = R; set Ry := R®O<Zi1>(’)(lﬂ/” ) as in §4.3. Then, as explained in §4.3 and repeated in
Remark 5.3, there are Cartan-Leray almost (wrt. W (m®) and W,.(m) respectively) quasi-isomorphisms
of complexes of Ay~ and W,.(O)-modules respectively

chont (Zp(l)d; W(Rio» — RFproét (X7 Ainf,X)

and
BT cont (Z (1), Wy (Rog)) — RTproct (X, W, (OF).

Applying L, (resp. Ln,,.)-1) obtains

AQR o = LN BT cont (Zy(1)*, W(R2,)) — Ly R proet (X, Aun x) = AQRS (t4)

and
—0 ~ —~——proét
WrQr/0 = Lnjc,r)-1 R cont (Zp(1)%, Wi (Roc)) — Litie, -1 R proct (X, Wi (O%)) = WoQp o (15)

(The squares OO0 remind us that the objects depend on the chosen framing.) The second technical
lemma, stating that the décalage functor has transformed the almost quasi-isomorphisms into actual
quasi-isomorphisms, and hence reminiscent of Theorem 2.5, is:

Lemma 7.2. (t4) and (t5) are quasi-isomorphisms.

We now sketch a proof of the previous two technical lemmas. The arguments are of a similar flavour
to what we have already seen in §2.2 and §6.3, so we will not provide all the details; see [§9, BMS] for
further details. For the overall logic of the proof, it will be helpful to draw the following commutative
diagram of the maps of interest:

RT 00 (%, W,z ) = RT3 (X, A 0) /& —— = RT 00 (%, Lic, |1 Rvu W, (OF)
(t1) mod &, (t2)
Aggf(éot/gr = L0 R proce (X, Aint x ) /&r SN L, -1 B proct (X, W,(0%)) = WTT?Z;?
(t4) mod &, (t5)

~ ~  (t6) ——[]
AQ%/@/&T = LnuRFCOm(ZP(l)d, W(Rio))/gr I Ln[cpr]flRFcont(Zp(l)dv WT(ROO>) = WTQR/O

The new maps, namely (t6) and (t7), are simply the base change maps associated to the identifications
0, : W(R".)/& 5 W,(Rso) and 6, : Ajng x /& 5 WT(@;’() In particular, the diagram commutes by the
naturality of global-to-local and base-change maps. We will show that (t1)—(t7) are quasi-isomorphisms.
We begin by proving the following, which is [Lem. 9.7(i), BMS]:

Lemma 7.3. RUcont(Z,(1)4, W, (Rs)) is quasi-isomorphic to the derived p-adic completion of a direct
sum of Koszul complezes Ky, (0y([¢"] —1,...,[¢*] — 1), for varying k; € Z[%] .
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Proof. Since Witt vectors preserve étale morphisms [BMS, Thm. 10.4], the maps W,.(O(TFY/P™) /pn) —
W, (Roo/p™) induced by the framing are étale for all n > 1, whence the same is true of the maps
W (O(TEYPTY) Jp" — W,(Rao)/p™ (since the systems of ideals (p"W,(B))n>1 and (W, (p"B))n>1 are
intertwined for any ring B; for a proof see, e.g., [BMS, Lem. 10.3]). In particular, these latter maps are
flat for all n > 1 and therefore

RTeont(Zy(1)", Wy (Roo)) = RTcont(Zyp(1)®, Wi (O(TE/P"))@Ly, o1y Wi (Roo).-

Next we note that RT cong (Zy (1)%, W,.(O(TEYP7))) identifies with the derived p-adic completion of the
complex RD(Z%, W,(O)[U/P”]) which was studied in §6.3: we will explain and prove this identification
carefully towards the end of the proof of Proposition 7.7, so do not say more here. Also, an easy
modification of the first half of the proof of Lemma 6.12 shows that

RO(ZE W (O )= D Kwo)(¢] =1, [ = 1) @w, (o) We(O)UH/P7).

Assembling these identities shows that Rl cont (Zp(1)¢, W, (Rs)) is quasi-isomorphic to the derived p-adic
completion of

D EwocM] - 1., [¢5] 1) O, 0) Wr(Reo).
kl,...,kdez[%]ﬂ[o,l)

The proof is completed in a similar way to that of Theorem 2.5, namely by arguing that W, (R.) is the
p-adic completion of a free W,.(O)-module, which we leave to the reader. O

Proof that (t5) is a quasi-isom. Using Lemma B.1 to calculate the cohomology of the Koszul complexes
in Lemma 7.3 (and footnote 10 to exchage cohomology and p-adic completions), it follows that each
cohomology group of RT cont(Z,(1)%, W,.(Rw)) is isomorphic to the p-adic completion of a direct sum of
copies of

Wi (0),  We(O)llG] =1, We(O)/([Gw] - 1), =1,

each of which is “good” in the sense of Lemma 2.7 (wrt. A = W,.(O), M = W, (m), and f = [(r] — 1))
by [Corol. 3.29, BMS]. So all cohomology groups Rl cont(Zp(1)¢, W,.(Rs)) are good, whence Lemma 2.7
implies that (t5) is a quasi-isomorphism. O

Proof of Lemma 7.1(%). Since Ly, 1 commutes with derived p-adic completion by Remark 3.16, Lem-
/_\—/D
mas 7.3 and B.2 imply that W, Qg = L, .1—1 R cont (Z,(1)4, W,.(Rs)) is quasi-isomorphic to the derived
p-adic completion of a direct sum of Koszul complexes
Kw, (o) ([Cph] ! [Cpial — 1)
" [Cpr] —1 [Gpr] —1

for varying ji,...,Jq4 < r. The calculation at the end of the proof of Lemma 6.12 therefore shows that

—0
the cohomology groups of W, Qp are p-torsion-free. Combining this with quasi-isomorphism (t5) proves
Lemma 7.1(i). O

Proof of Lemma 7.1(ii) and that (t2) is a quasi-isom. Let R’ be a p-adically complete, formally étale R-
algebra, and write R, := R’<§>0@11>O<Iil/pm>. Just as at the start of the proof of Lemma 7.3, the
maps W, (Rx)/p™ — W, (RL,)/p™ are flat for all n > 1, whence the canonical map

WTQR/O®LWT(R) Wr (R/) — WTQR//O

is a quasi-isomorphism. The same is therefore true after replacing U by P (since (t5) is a quasi-

isomorphism for both R and R’), and this proves Lemma 7.1(ii). This is a strong enough coherence result
—~——proét — ~

to show that WTQ;/@ L w, (ryWr(Ox) — Luje,.)—1 R W, (OF%) is a quasi-isomorphism of complexes of

W,-(Ox)-modules, and it follows that (t2) is a quasi-isomorphism (see [Corol. 9.11, BMS] for further

details). 0
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Proof that (t6) is a quasi-isom. According to footnote 43, it is enough to prove that the cohomology of
the complex RT cont(Z,(1)4, W(R%)) ®kinf Aing/ 1thing = RTcont (Z,(1)4, W(R2,) /) is p-torsion-free. We
claim first that the map W (O(TEYPN) J(, pry — W(R,)/ (, p") s étale for all r > 1; indeed, p” = &
mod phins and so 6, identifies this map with W,(O(T=YP7))/([¢pr] — 1) = Wir(Roo)/([Gpr] — 1). But
[¢,r] — 1 divides p” and, just as at the start of the proof of Lemma 7.3, the map W,(O(TY/P™Y)) /p —
W,-(Rso)/p" is étale; this proves the claim.

The claim reduces the proof to showing that the cohomology of RIcont(Z(1)%, W(OTEVPVy /)
is p-torsion-free. To show this we first observe that there is an isomorphism of Aj,¢/uAi,s-algebras

Aunt/ phing (U2 ) S5 W(O@HP™ ) fu, UF s (T, TEP T, (ke z]h),

which is proved by quotienting the “standard isomorphism” in the proof of Lemma 6.13 by [(,r] — 1
and then taking @T wrt o BY the same type of Koszul decomposition argument which has been made

several times, it now follows that R cont (Z,(1)%, W(O(TEYP™Y?) /1) is quasi-isomorphic to the derived

p-adic completion of
k E
@ Ky o/nng (€] =1, 7] = 1).
B k€2l

The cohomology of each of these Koszul complexes is, by Lemma B.1, a finite direct sum of copies of
(Ainf/,uAinf)[[ek] - 1] and Ainf/([f':k] - I)Ainf
for various k € Z[L]. But these are p-torsion-free since p, [¢¥] —1 is a regular sequence of A;y¢ (see footnote

1
P
45) for any k € Z[%] (including k = 1, to treat the left term). O

Proof that (t4) is a quasi-isom. Proving that (t4) is a quasi-isomorphism was done in [BMS] via a subtle
generalisation of the “good” cohomology groups argument of Lemma 2.7, which required calculating
RT cont (Zy(1)4, W (O(TF/P7V%)) in terms of Koszul complexes™ (see Lems. 9.12-9.13 and the first para-
graph of Prop. 9.14). Here we will offer a simpler argument which was presented first in [3, Rem. 7.11].

We need the following strengthening of Lemma 2.7: “Let 9t C A be an ideal of a ring and f € 9t a
non-zero-divisor; if C — D is a morphism of complexes of A-modules whose cone is killed by 21, and all
cohomology groups of C' ®% A/fA contain no non-zero elements killed by 92, then LnsC — LnyD is a
quasi-isomorphism.” This follows from the proof of [3, Lem. 6.14] and exploits the relation between Ln
and the Bockstein construction.

Applying this in the case A = Ay,¢, f = p, and I = W(mb), the proof immediately reduces to showing
that the cohomology of Rl cont(Z,(1)%, W (R2,)/p) contains no non-zero elements killed by W (m”)2. But
the decomposition from the previous proof showed that each of these cohomology groups was the p-adic
completion of a direct sum of copies of the p-torsion-free modules

(Aint/pAin)[[E¥] = 1] and A/ ([€¥] — 1) Ajus
for various k € Z[%]; so it is enough to show for any k € Z[%] (including k = 1, to treat the left term)
that Aine/([¥] — 1)Ains contains no non-zero elements killed by W (m®)2. But the maps 6, induce an
isomorphism Ajne/([e%] — 1) Ainr = fm W, (0)/([¢¥/?"] = 1), and each W,.(O)/([¢*/?"] — 1) contains
no non-zero elements killed by W,.(m)? = W,.(m) (recall that W,.(m) is an ideal for almost mathematics,
c.f., footnote 21), as we already saw above in the proof that (t5) is a quasi-isomorphism. O

Proof that (t1), (t3), and (t7) are quasi-isoms. Since we now know that (t4) is a quasi-isomorphism, the
commutativity of the diagram implies that (t3) is a quasi-isomorphism. Using this quasi-isomorphism,
and by taking Rlim, ¢ ¢ of the quasi-isomorphisms (t2), it can be shown that (t1) is a quasi-isomorphism
[BMS, Prop. 9.14]. Finally, the commutativity of the diagram implies that (t7) is also a quasi-isomorphism.

O

50Here we explain why the analogous calculations we have already seen do not generalise to this case. Although there is

an identification Ay, ¢(UEY/P™) 5 W (O(TE/PT )9 the convergence of the power series on the left is with respect to the
(p, £)-adic topology. But neither RT¢ont (Zp(1)%,-) nor Ln;, commute with derived (p, £)-adic completion!
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This finishes the proofs of the technical lemmas, but we note in addition the following consequence
which was needed at the start of the proof of Theorem 5.9:

Corollary 7.4. If X is a smooth formal scheme over O, then the complex of Ajne-modules RT 7, (X, AQx/@)
is derived &-adically complete.

Proof. By picking a cover of X by small opens, we may suppose that X = Spf R is a small affine as
above. Then the complex RTconi(Z,(1)%, W (R’,)) is derived &-adically complete since W(R%) is &-
adically complete,®! whence AQ% e is derived {-adically complete since Ln,, preserves the completeness

by footnote 31. Now quasi-isomorphisms (t1) and (t4) complete the proof. O

7.2 Reduction to a torus and to Theorem 6.14

We continue to suppose that R is a p-adically complete, formally smooth O-algebra, with notation
X =SpfRand X =Sp R[%] as in §7.1. We wish to apply the construction of §6.2 (with base perfectoid
ring A = O) to

D%r/ogt = Rrproét (X, Ainf,X)a

and must therefore check that the necessary hypotheses are fulfilled:

Lemma 7.5. D%r/og is a coconnective algebra object in D(Aing) which is equipped with a p-semi-linear

~

quasi-isomorphism Qprost D%r/ogt = D%r;)gt. If R is small, then it moreover satisfies assumptions
(W1)-(W3) from §6.2 and there exist W,(O)-algebra homomorphisms Ay progt : Wr(R) — H()(Dgfgt/é})
(natural in R) making the diagrams of Theorem 6.10 commute.

Proof. D%r/ogt is clearly a coconnective algebra object in D(Aj,¢), and it is equipped with a ¢-semi-linear
quasi-isomorphism ¢p4t induced by the Frobenius automorphism of Ajn¢ x, similarly to Lemma 5.8.

Moreover, H ‘)(D%r;’ét) = ngoét(X , Ainr x) is p-torsion-free, since Ajys x is a p-torsion-free sheaf on
Xprost by Corollary 4.6; this proves that assumption (W1) holds. It remains to check (W2) and (W3), as
well as prove the existence of the maps A,; for this we must now assume that R is small (but we do not fix
any framing). Hypotheses (W2) and (WW3) are then exactly the p-torsion-freeness and quasi-isomorphism
(t3) of Lemma 7.1.

Finally, the canonical maps of Zariski sheaves of rings Ox — v, @; — Ry, @j on X induce analogous
maps on Witt vectors (see footnote 20), namely W,.(Ox) — V*WT(@}) — Ruv,W,(OF), which are
compatible with R, F,V on each term. Applying H(X, —) to the composition then yields the following
arrow which is also compatible with R, F, V:

A §T roét ;&
Arprost : Wi(R) = Hyor(X, Wi (Ox)) — Hpoe (X, W (O%)) = HO(DYTG /).
The isomorphism gr is compatible with R, F, V on the left according to a sheaf version of the second set
of diagrams in Corollary 3.5; therefore, overall, these maps A, prost make the diagrams of Theorem 6.10
commute, and they are clearly natural in R, as desired. O

Continuing to assume that R is small, the previous lemma states that all hypotheses of Theorem 6.10
are satisfied for D%r/og, and so there are associated universal maps of Witt complexes, natural in R,

;,proét : WTQ;%/(D — W; (DI}){/O(?) = H.(Anggt/fr)-

By Remark 6.11, these factor through the p-adic completion of the left side, i.e.,

)‘?,proét : (WTQ%/O)p — HR(AQI]);/O(th/gT)

The p-adic Cartier isomorphism will follow from showing that these maps are isomorphisms:

51Tf A is any perfectoid ring then W (A”) is Ker f-adically complete.
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Lemma 7.6. The following implications hold:

X:ﬁpmét is an isomorphism when R = (’)(Tlil, cee Tdﬂ).
R U
AL progt 1S an isomorphism for any every small, formally smooth O-algebra R.
)

The p-adic Cartier isomorphism (Theorem 5.5) is true.
Proof. The first implication is a consequence of the domain and codomain of X:_ﬁproét
formally étale base change, according to Remark 6.4(v)&(vi) and Lemma 7.1(ii).
For the second implication it is convenient to briefly change the point of view and notation, by fixing
a smooth formal scheme X over O and letting Spf R C X denote any small affine open. We then consider
the composition

behaving well under

o

H" (AQRTG /r)

R/O H%ar(spf R, WTQX/O)

H (W, Q Spf R
P P p— (W Qx,0)(Spf R)

and note that the edge map is an isomorphism by the coherence result of Lemma 7.1(ii).?? Since

(W, Q% /o); =W Q% o (Spf R) (Remark 6.4(vi)), the middle assumption therefore leads to isomorphisms

W% 0 (Spf R) = H" (W, Qx/0)(Spf R)
naturally as Spf R C X varies over all small affine opens; that proves the p-adic Cartier isomorphism. O

To complete the proof of the p-adic Cartier isomorphism we must prove the top statement in
Lemma 7.6, namely the following:

Proposition 7.7. The universal maps

)‘:'L,proét : (WTQ%/O); — HH(AQII){Y/O(?)t/gT)
are isomorphisms in the special case that R := O(TE!, ... ,Tfl).

Proof. The proof will consist merely of assembling results we have already established: indeed, the tech-
nical lemmas of Section 7.1 imply that H™ (AQ%Y/Og /&) can be calculated in terms of group cohomology,
which we identified with the de Rham—Witt complex in Theorem 6.14.

Note first that the map® Ap[UTYP"] — W(OTFYP™V), UF — [(TF, Tik/p, Tik/p2, ...)], when
base changed along 0,, yields an inclusion W (O)UHPT] — W, (TP, UF — Tik/pT which
identifies the right with the p-adic completion of the left, i.e., with W(Ab)<Qi1/poo>; indeed, this follows
easily from the “standard/modified isomorphisms” which appeared in the proof of Lemma 6.13. The map
Ainf[Qil/poo] — W(O(Zil/pOO)") is obviously also compatible with the actions of the groups Z? C Zp(l)d
(induced by our fixed choice of p-power roots of unity) on the left (from §6.3) and right, thereby inducing
the first of the following maps:

RI(Z, Aing[UF"/P7]) —— R cont (Zp(1)?, W(O{LF/P7)?)) —— RTproet(Sp R[2], Ains x)
| def. || I
D%’)r,}zl peont D%F/Ogﬁ

Here D#P := D§P was the object of study of §6.3, and the second map is the Cartan-Leray almost
quasi-isomorphism which has already appeared, for example just after the statement of Lemma 7.1. Both

52Here we are of course using the trivial identification Vl//:flx/(ﬂsp“g = I/I//:flspf Rr/o in order to appeal to the affine
results in §7.1.

53This map is injective and identifies the right with the (p, £)-adic completion of the left, i.e., with Aimc<Qil/poo>, but
we do not need this.

44



Matthew Morrow

maps in the previous line are morphisms of commutative algebra objects in D(Aj,¢), compatible with
the Frobenius on each object (in particular, with ¢g., on the left and ¢pro¢e on the right).

Moreover, we claim that the composition makes the following diagram of structure maps commute
for each r > 0:

HO(Dgrp/g") —_— HO(Dproét/gT)

)‘TngpT T)‘r,proét

W, (O[T ])) o W, (O(T*))

The proof of this compatibility is a straightforward chase through the definitions of the structure maps
Argrp aNd Approst. We first identify the top row via 6, with the composition of the top row of the
following diagram:

UksTk/P"

W, (O)[UFVP™)2 s W (o(THYPT ) B ()" HY, ¢ (Spf R, W,(O%))

)\hgrpT \ T)\T’pr()ét

W (OIT*H])C W, (O(T*)

The diagonal arrow here is the obvious inclusion (it is actually an isomorphism); since the Cartan—Leray
map (i.e., top right horizontal arrow) is one of W, (O(T*!))-algebras and A, proet Was defined to be
precisely the algebra structure map, the resulting triangle commutes. Commutativity of the remaining
trapezium is tautological: the definition of A, g;p in the proof of Lemma 6.13 was exactly to make this
diagram (or, more precisely, the analogous diagram with W, (O[TF/P™]) instead of W,(O(TTYP™Y))
commute.

By the naturality of Theorem 6.10, the following diagram therefore commutes:

W (DeP) WHDES)
)‘?,grpT T/\:,proét
Weldo pay,0 — Wellg iy 0

The bottom horizontal arrow here becomes an isomorphism after p-adic completion,®® and A grp Was
proved to be an isomorphism in Theorem 6.14; so to complete the proof it remains to show that the top
horizontal arrow identifies Wﬁ(D%r/og) with the p-adic completion of W} (D#'P). But the top horizontal
arrow is precisely H" of the composition

Lingey1-1(DFP &) — Linge,y-1 (D™ /&) — Lige,1-1 (DRSS /E,)

where the second arrow is the quasi-isomorphism (t5) of Lemma 7.2. Meanwhile, the first arrow identifies
the middle term with the derived p-adic completion of the left: indeed, Ly ,j—1 commutes with p-adic

completion by Remark 3.16, so it is enough to check that DCO“/ET = Rl cont(Z,(1)%, WT(C)(Iﬂ/pW}) is
the derived p-adic completion of DgrP/ET = RI(Z¢, W,.(0) [Qil/pw]); but this follows from WAO(IiUPOO ))
being the p-adic completion of W,.(O[T +1/p m]) So, finally, recall that the cohomology groups of
L, -1-1(D#™® /&) are p-torsion-free (since DS'P satisfies (/'2) and (W3)), whence H™ of its derived
p-adic completion is the same as the naive p-adic completion of its H™. O

This completes the proof of the p-adic Cartier isomorphism and these notes.

n

(o[r*1)/ps) /(0 /ps0) 20D

54By Remark 6.4(vi), the p-adic completions may be identified respectively with l(iLnS w,Q

lim W,Q%
s

(O(T£1) /p*) /(O /p=O)’ which are clearly the same.
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A A

1

. AND ITS MODULES

The base ring for the cohomology theory constructed in [BMS] is Fontaine’s infinitesimal period ring
Ajyg = W((’)b), where O is the ring of integers of a complete, non-archimedean, algebraically closed field
C of mixed characteristic. Since O is a perfectoid ring (Example 3.12), the general theory developed in
Section 3 (including §3.3) applies in particular to O. Our goal here is firstly to present a few results
which are particular to O in order to familiarise the reader, who may be encountering these objects for
the first time, with O and Aj,f; then we will explain some of the finer theory of modules over Ajs.

We begin by recalling from [15, §3] that ©” is the ring of integers of C* := Frac O (footnote 12 shows
that O” is an integral domain), which is a non-archimedean, algebraically closed field of characteristic
p > 0, with the same residue field k as ©. The absolute value on C is given by multiplicatively extending
the absolute value on on O given by

O = lim 0245 0 LR
L >0

TP

where the first arrow uses the convention introduced just before Lemma 3.4, and the second arrow is the
absolute value on O. The reader may wish to check that this is indeed an absolute value, i.e., satisfies
the ultrametric inequality, that C” is complete under it, and that the ring of integers is exactly ©”. The
existence of the canonical projection O — O/pO implies that O’ and O have the same residue field.
Hensel’s lemma shows that C” is algebraically closed.?®

Now we turn to Ajne. Let ¢ € Ajpr be any element whose image in A, /pAins = O” belongs to m® \ {0};
examples include ¢t = [r], where m” \ {0}, and t = &, where ¢ is any generator of Kerd. Then p,t is a
regular sequence, and Ajy¢ is a (p, t)-adically complete local ring whose maximal ideal equals the radical
of (p,t); in short, Ay, “appears two-dimensional and Cohen-Macaulay”.

In fact, as we will explain the result of this appendix, modules (more precisely, finitely presented
modules which become free after inverting p) over A;, ¢ even behave as though A;,¢ were a two-dimensional,
regular local ring.’¢ Further details may be found in [BMS, §4.2].

Remark A.1. In light of the goal, it is sensible to recall the structure of modules over any two-
dimensional regular local ring A, such as A = Og[[T']] where Of is a discrete valuation ring. Let w,t € A
be a system of local parameters and m = (m,¢) its maximal ideal.

(i) Most importantly, any vector bundle on the punctured spectrum Spec A \ {m} extends uniquely to
a vector bundle on Spec A.

(ii) Finitely generated modules over A are perfect, i.e., admit finite length resolutions by finite free
A-modules. (Proof. Immediate from the regularity of A.)

(iii) If M is any finitely generated A-module, then there is a functorial short exact sequence
0 — Moy — M — Mpee — M — 0

of A-modules, where M, is torsion, My.e is finite free, and M is killed by a power of m.

Proof. My, is by definition the torsion submodule of M, whence M /M;,, restricts to a torsion-free
coherent sheaf on the punctured spectrum Spec A \ {m}; but the punctured spectrum is a regular

55We sketch the proof here, which is obtained by reversing the roles of © and O’ in [15, Prop. 3.8]. Let p’ =

(p,pl/l’,pl/?’z, ...) € A’ whose absolute value |pb| = |p| we may normalise to p~! for simplicity of notation. It is
sufficient to prove the following, which allows a root to any given polynomial to be built by successive approximation: If
f(X) € ©"[X] is a monic irreducible polynomial of degree d > 1, and o € O satisfies |f(a)| < p~™ for some n > 0, then
there exists & € O satisfying |e| < p~™/% and |f(a 4 )| < p~(**+1). Well, given such f(X) and a, use the fact that C
and C have the same value group (this is easy to prove), which is divisible since C is algebraically closed, to find ¢ € O°
such that ¢4 f(c) is a unit of @”. Then g(X) := ¢~ f(a+cX) is a monic irreducible polynomial in C’[X] whose constant
coefficient lies in O (even ©@*X); a standard consequence of Hensel’s lemma is then that g(X) € O°[X]. Next observe that
the canonical projection ©” — O/pO has kernel p"OP (Proof. Either argue using valuations, or extract a more general
result from the proof of Lemma 3.7.), whence every monic polynomial in (’)b/pbO" has a root. So, by lifting a root we find
B € O satisfying g(8) € p®OPb; this implies that f(a + ¢8) € f(B8)p°O°, and so € := ¢ has the desired property. [

56However, A ¢ is not Noetherian, it is usually not coherent [12], and the presence of certain infinitely generated,
non-topologically-closed ideals implies that it has Krull dimension > 3...
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one-dimensional scheme, so this torsion-free coherent sheaf is necessary a vector bundle, and so
extends to a vector bundle on Spec A by (i); this vector bundle corresponds to a finite free A-module
Miree which contains M /My, with the ensuing quotient M being supported at the closed point of
SpecA. O

(iv) Finite projective modules over A[1] are finite free.

Proof. Let N be a finite projective A[%]-module, and pick a finitely generated A-module N’ C N
satisfying N’ [%] = N. Then Ny is a projective module over Ay for every non-maximal prime ideal
p C A: indeed either m ¢ p, in which case N, is a localisation of the projective module N, or
p = (m), in which case A, is a discrete valuation ring and it is sufficient to note that N,; obviously
has no w-torsion. This means that N’ restricts to a vector bundle on the punctured spectrum,
whose unique extension to a finite free A-module N satisfies N”[1] = N. O
Theorem A.2. (i) (Kedlaya) Any vector bundle on the punctured spectrum
Spec Aint \ {the maz. ideal of At}

extends uniquely to a vector bundle on Spec Ajys.

(i) If M is a finitely presented Aine-module such that M[%] is finite free over Ainf[%], then M 1is perfect
(again, this means that M admits a finite length resolution by finite free Ajne-modules).
(iii) If M is a finitely presented Ajns-module such that M[%] is finite free over Aing[=], then there is

1
p
functorial short exact sequence of Ajne-modules
0 — Mgy — M — Mpyee — M — 0

such that: Moy is a perfect Aine-module killed by a power of p; Mpee s a finite free Ajng-module;
and M is a perfect Aipe-module killed by a power of the ideal (p,t).

(iv) Finite projective modules over Ainf[%] are finite free.
Proof. We have nothing to say about (i) here, and refer instead to [BMS, Lem. 4.6]. We will also only
briefly comment on the remaining parts of the theorem, since these self-contained results may be easily
read in [BMS, §4.2].

(ii): By clearing denominators in a basis for M [%] to construct a finite free Aj,r-module M’ C M
satisfying M’[%} = M[%], we may reduce to the case that M is killed by a power of p, i.e., M is a
Aine/p" Ains = WT(Ob)—module for some r > 0. By an induction on r, using that WT(Ob) can be shown
to be coherent, one can reduce to the case r = 1, in which case it easily follows from the classification
of finitely presented modules over the valuation ring O°: they have the shape (0°)" © 0°/a,; 0" @ --- @
(’)b/am(’)b, for some n > 1 and a; € O°, and so in particular are perfect.

(iii): This is proved similarly to the analogous assertion in the previous remark.

(iv): This is proved exactly as the analogous assertion in the previous remark, once it is checked that
the localisation Aj,f (,y is a discrete valuation ring. O

Corollary A.3. Let M be a finitely presented Aing-module such that M[%] 18 finite free over Ainf[%}. If
either M@y, W (k) or M®a, O is p-torsion-free (equivalently, finite free over W (k) or O respectively),
then M is a finite free Ajr-module.

Proof. Tt follows easily from the hypothesis that the map M — Mfpe in Theorem A.2(iii) becomes an
isomorphism after tensoring by W (k) or O; hence M [%] and M ®, . k have the same rank over Ainf[%]
and k respectively. But an easy Fitting ideal argument shows that if IV is a finitely presented module
over a local integral domain R satisfying dimgyac r(N @ g Frac R) = dimy, gy (N ®@r k(R)), then N is finite
free over R. O

To state and prove the next corollary we use the elements &, &, u € Ay constructed in §3.3:

Corollary A.4. Let M be a finitely presented Aj-module, and assume:
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- M[--] is a finite free Al -]-module of the same rank as the W (k)-module M @y, W (k).

il ol

- There exists a Frobenius-semi-linear endomorphism of M which becomes an isomorphism after
inverting £.

Then M[%] is finite free over Ainf[%].

Proof. We must show that each Fitting ideal of the Ainf[%]—module M[%] is either O or Ainf[%]; indeed,

this means exactly that M[1] is finite projective over Ainf[%], which is sufficient by Theorem A.2(iv).

Since Fitting ideals behave well under base change, it is equivalent to prove that the first non-zero

Fitting ideal J C Ajur of M contains a power of p. Again using that Fitting ideals base change well,

our hypotheses imply that JAinf[ﬁ] = Ainf[ﬁ} and JW (k) # 0; that is, J contains a power of pu and

J 4+ W (m®) contains a power of p, where W (m”) := Ker(Ajys — W (k)). Because of the existence of the

Frobenius on M, we also know that J and ¢(J) are equal up to a power of ¢(£). In conclusion, we may

pick N > such that
(i) (o)™ € J;
(i) pN € J 4+ W (m);

(ii) ©(§)Nep(J) € J and p(§)NJ € p(J).

Since W (m) is the p-adic completion of the ideal generated by =" (u™), for all » > 0,57 observation
(ii) lets us write p~ = a+ Bo " (uV) + B/pN 11 for some o € J and 3, 8" € Ajyg, and r > 0. Since 1 — 'p
is invertible, we may easily suppose that 8’ = 0, i.e., p™ = a+ B~ " (¢V). Multiplying through by pV¢N
gives ENp2NV = pNeNa + BpN Y, which belongs to J by (i) and (ii).

We claim, for any a,i > 1, that

ggpsome power — s €g71psome other power cJ.

A trivial induction then shows that J contains a power of p, thereby completing the proof, and so it
remains only to prove this claim. Suppose £2p® € J for some a,b,i > 1. Then ¢"(£,.)%" € " (J),
and so ¢"(£.)9NpP € J (since an easy generalisation of (iii) implies that ¢"(&.)Np"(J) C J). But
©" (&) = p" mod &, so we may write " (&)t = pr(@tN) 4 og, for some a € Ay and thus deduce that
J 3 (pretN) 4 g, )pt = prletN)+b 4 ag pb. Now multiply through by €2~ and use the supposition to
obtain £~ 1pr(@tN)+b ¢ ] ag required. O

We will also need the following to eliminate the appearance of higher Tors in the crystalline special-
isation of the A;,r-cohomology theory:

Lemma A.5. Let M be an Ajne-module such that M[%] is flat over Ainf[%]. Then Torfi“f(M, W(k))=0
for x > 1.

Proof. Let [m?] C W (m®) be the ideal of Aj,; which is generated by Teichmiiller lifts of elements of m”.
We first observe that Aj,¢/ [mb] is p-torsion-free and has Tor-dimension = 1 over A;,¢: indeed, [mb] is the
increasing union of the ideals [7r]Ajys, for 7 € m®\ {0}, and the claims are true for Aj,¢/[7] Ay since p, []
is a regular sequence of Ajys.

Next, since W,.(m?) is generated by the analogous Teichmiiller lifts in W,.(O) = Ajnt/p" Aint, for any
r > 1 (c.f., footnote 21), the quotient W (m”)/[m’] is p-divisible. Combined with the previous observation,

it follows that W (m”)/[m°] is uniquely p-divisible, i.e., an Ainf[%]—module, whence

Tor it (17 (m?)/[m?], M) = Tor ™ 3y (ent) Jim?), ML),

p

which vanishes for * > 0 by the hypothesis on M. Combining this with the short exact sequence
0 — W(m")/[m’] = Apne/[m"] = A/ W (m®) = W(k) = 0

and the initial observation about the Tor-dimension of the middle term completes the proof. O

5By an easy induction using that p is a non-zero-divisor in Aj,¢/W (m), this follows from the fact that the maximal ideal
of Ajp/pAips = O is generated by the elements p~"(¢) — 1, for all r > 0.
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B TwO LEMMAS ON KOSZUL COMPLEXES

Let R be aring, and ¢1,...,g4 € R. The associated Koszul complex will be denoted by Kr(g1,...,94) =

®?:1 Kr(g:), where Kg(g;) := [R £+ R]. Here we state two useful lemmas concerning such complexes,
the second of which describes the behaviour of the décalage functor.

Lemma B.1. Let g € R be an element which divides g1,...,9q4, and such that g; divides g for some i.
Then there are isomorphisms of R-modules

d—1 d—1
H(Kr(gr,....9q) = Rlg)(") @ R/gRG=Y)
for allmn > 0.
Proof. [Lem. 7.10, BMS]. O

Lemma B.2. Let f € R be a non-zero-divisor such that, for each i, either f divides g; or g; divides f.
Then:

- If f divides g; for all i, then nyKg(g1,-..,94) = Kr(g1/f,.-..94/f)-
- If g; divides f for some i, then nyKgr(g1,...,9a4) s acyclic.
Proof. [Lem. 7.9, BMS]. O
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